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 Introduction 
  &  
 In men, the risk of developing coronary artery 
disease and hypertension is much higher than in 
premenopausal women ( Messerli et al., 1987 ; 
 Khaw et al., 1988 ). However, cardiovascular pro-
tection during the reproductive age is lost after 
menopause, and is recovered in postmenopausal 
women who receive estrogen replacement 
therapy ( Stampfer et al., 1991 ). This has led to 
supposition that estrogens are benefi cial and 
androgens are detrimental to the cardiovascular 
system. 
 There is now a plethora of evidence that estro-
gens may play an important cardiovascular pro-
tective role not only by means of long-term 
systemic effects, like those on serum lipid pro-
fi le, but also by means of direct effects of vascu-
lar structure and function, such as inhibition of 
vascular growth modulation of vascular tone 
( Simonchini and Genazzani, 2003 ;  Cho et al., 
2003 ). Of the effects previously studied, the 
vasodilating effect induced by estrogens has 
been well-documented. The mechanism of action 
of estrogens appears to involve genomic and 
non-genomic mechanisms that cause increase 
and release of vasodilatory agents such as nitric 
oxide (NO) and prostacyclin, adenosine, cAMP 

  Abstract 
  &  
 The increased incidence of cardiovascular disease 
in man compared with premenopausal women 
suggests an unfavourable effect of male sex hor-
mone testosterone on the cardiovascular system. 
However, numerous clinical and epidemiologi-
cal studies reported a controversial relation-
ship between testosterone and cardiovascular 
disease. Furthermore, an increasing amount of 
evidence indicate that testosterone can exert 
acute vasorelaxing effects,  via  non-genomic 

and cGMP ( Belfort et al., 1996 ;  Darkow et al., 
1997 ; Dubey and Jackson, 2001) Potassium –
 channel opening and calcium antagonistic actions 
have also been reported ( White et al., 1995 ; 
 Valverde et al., 1999 ;  White et al., 2002 ;  Han et 
al., 2006 ). 
 On the other hand, testosterone has classically 
been considered to exert an unfavourable effect 
upon the cardiovascular system. However, 
numerous clinical and epidemiological studies 
reported a controversial relationship between 
testosterone and cardiovascular disease. For 
example, low circulating testosterone levels in 
men are positively correlated with numerous 
risk factors for coronary heart disease ( English et 
al., 1997 and 2000a ). Evidence also supports a 
benefi cial effect of testosterone on the blood 
lipid profi le and against atheroma formation 
( English et al., 1997 ;  Duell et al., 1990 ;  Khaw et 
al., 1991 ;  Hromadowa et al., 1991a and b ;  Alexan-
dersen et al., 1999 ). Furthermore, acute intracor-
onary or intravenous infusion of testosterone 
also provides rapid improvements in myocardial 
ischemia ( Rosano et al., 1999 ;  Webb et al., 1999a ). 
Finally, testosterone replacement therapy 
improves myocardial ischemia in patients with 
coronary artery disease, an effect presumably 
due to testosterone -induced coronary vasodila-

mechanisms. These effects involve primarily the 
vascular smooth muscle, without requiring the 
presence of endothelium, although an endothe-
lial contribution is apparent in some studies. To 
date, the mechanism behind the vasodilatory 
action of testosterone is still under debate and 
might be through either activation of K     +      channels 
or blockade of Ca 2    +      channels in vascular muscle 
cells. The purpose of this article is to review the 
evidence regarding the vasodilating effect of tes-
tosterone as well as its mechanism of action.         
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tation ( English et al., 2000b ). Previous animal studies have dem-
onstrated that testosterone acts as a direct coronary vasodilator 
in a variety of species, including rabbit, dog, pig, and rat, both in 
vivo ( Chou et al., 1996 ) and in vitro ( Yue et al., 1995 ;  Murphy and 
Khalil, 1999 ;  Crews and Khalil 1999a and b ;  English et al., 2000c; 
English et al., 2002 ). Testosterone is also reported to exhibit a 
vasodilatory action in thoracic aortae ( Yue et al., 1995 ;  Perusquia 
et al., 1996 ;  Honda et al., 1999 ;  Ding and Stallone, 2001 ) and in 
vessels isolated from the mesenteric ( Tep-areenan et al., 2002 ) 
and pulmonary ( English et al., 2001 ;  Jones et al., 2002 ) vascula-
ture of experimental animals and more recently in isolated 
human pulmonary and mesenteric arteries ( Jones et al., 2003a ). 
We have recently shown that testosterone relaxes human inter-
nal mammary (IMA) and radial (RA) but not umbilical arteries 
(UA) ( Yildiz et al., 2005a ).   

 Mechanisms of testosterone-induced vasodilation 
  &   
 Involvement of the androgen receptor (AR) 
 Numerous experimental studies have been conducted to make 
clear the mechanisms of testosterone-induced vasodilation. Tes-
tosterone is classically known to regulate cellular function  via  
interaction with the nuclear AR. In the bloodstream, most of cir-
culating testosterone is bound to serum proteins, mainly sex 
hormone binding protein (SHBG) and albumin. In target cells 
testosterone can directly bind to the nuclear AR, or it is con-
verted to dihydrotestosterone, which binds in turn to the AR. 
The hormone-receptor complex directly interacts with the 
nuclear DNA, modulating the transcription of androgen respon-
sive genes. This process of protein synthesis usually takes at 
least 40   min to hours. 
 In trying to explain the vasodilatory mechanism of action of tes-
tosterone, the initial studies focused on the degree of involve-
ment these classical steroid transcription mediated pathways 
played in the response ( Yue et al., 1995 ;  Chou et al., 1996 ;  Ding 
and Stallone, 2001 ;  Tep-areenan et al., 2002 ;  Jones et al., 2002 ). 
In this respect, it has been shown that the latency for the vasodi-
lating effect of testosterone is fast and reversible. It seems 
unlikely that testosterone-mediated vasodilatation would 
involve classical AR and genomic signalling pathway, because 
the response is evident within minutes of application and is 
maximal by 20   min, not hours. Moreover, additional substantial 
evidence is provided by fi ndings that testosterone-induced dila-
tation is not attenuated either by pre-treatment with the AR 
blocker fl utamide ( Yue et al., 1995 ;  Chou et al., 1996 ;  Ding and 
Stallone, 2001 ;  Tep-areenan et al., 2002 ;  Jones et al., 2002 ), or by 
the covalent linkage of testosterone analogues to albumin, thus 
preventing endocytosis into the smooth muscle cell ( Ding and 
Stallone, 2001 ;  English et al., 2000c ). In addition, blockers of 
transcription (e.g. actinomycin D) and translation (e.g. cyclohex-
imide) does not inhibit testosterone-induced vasodilation ( Teoh 
et al., 2000 ). Furthermore, it has also been demonstrated that 
testosterone-mediated vasodilatation is maintained in vessels 
isolated from testicular feminized mice, which lack a functional 
AR ( Jones et al., 2003b ). Previously, it was proposed that the 
relative polarity of the testosterone molecule determined its 
own vasorelaxation effi cacy ( Ding and Stallone, 2001 ). In our 
laboratory, we have tested the effi cacy of various testosterone 
analogs in human IMA and RA ( Yildiz et al., 2005a  and unpub-
lished data). Testosterone propionate is the most polar, least 
lipid soluble and smallest molecular weight (MW: 344.5) among 

the other esterifi ed testosterone analogs we have tested. Our 
data support the suggestion that testosterone-induced vasore-
laxation is a non-genomic and structurally specifi c effect of the 
testosterone molecule, which is enhanced in more polar analogs 
that have a lower permeability to the vascular smooth muscle 
cell membrane ( Ding and Stallone, 2001 ).   

 Involvement of aromatization 
 Potential conversion of testosterone to estrogen is another 
important concept to be addressed. In this respect, previous 
studies have demonstrated that inhibition of aromatase activity 
or estrogen receptor antagonism had no effect of testosterone –
 induced vasodilation ( Yue et al., 1995 ;  Tep-areenan et al., 2002 ). 
Moreover, similar vasodilatation to testosterone was triggered 
by non-aromatizable dihydrotestosterone ( Deenadayalu et al., 
2001 ). In our laboratory, we used tamoxifen, an estrogen recep-
tor antagonist and protein kinase C inhibitor, and letrozole, a 
non-steroidal aromatase inhibitor, to test the role of aromatisa-
tion in testosterone-induced relaxation in IMA. 
 While tamoxifen inhibited testosterone- induced relaxation, 
letrozole had no effect ( Gul et al., 2004 ). 
 This suggested that aromatisation did not occur in human IMA, thus 
estrogen did not contribute on testosterone-induced relaxation.   

 Involvement of endogenous vasodilators 
 A number of studies have investigated the involvement of dila-
tor prostanoids and endothelium derived nitric oxide ( Yue et al., 
1995 ;  Chou et al., 1996 ;  Costarella et al., 1996 ;  Honda et al., 1999 ; 
 Ding and Stallone, 2001 ;  Tep-areenan et al., 2002 ;  Jones et al., 
2002 ;  Tep-areenan et al., 2003 ). However, some of these studies 
report that indomethacin, an inhibitor of cyclo-oxygenase 
responsible for the synthesis of the cyclic endoperoxide from 
arachidonate, has no inhibitory effect upon testosterone medi-
ated relaxation ( Chou et al., 1996 ;  Yue et al., 1995 ; Honda et al., 
 Jones et al., 2002 ). Similarly, testosterone – induced vasodilata-
tion has been reported to be preserved in endothelial denuded 
vessels ( Yue et al., 1995 ;  Murphy and Khalil, 1999 ;  Crews and 
Khalil 1999a and b ;  Deenadayalu et al., 2001 ;  Perusquia et al., 
1996 ;  Honda et al., 1999 ;  Hishikawa et al., 1995 ) or in the pres-
ence of inhibitors of nitric oxide syntase or guanylate cylase ( Yue 
et al., 1995 ;  Deenadayalu et al., 2001 ;  Honda et al., 1999 ;  Jones et 
al., 2002 ). In addition, previous studies also showed that testo-
sterone had no effects on NOS activity in human and bovine aor-
tic endothelial cells ( Hishikawa et al., 1995 ;  Goetz et al., 1999 ). In 
canine coronary artery ( English et al., 1997 ) and rat mesenteric 
arterial bed ( Tep-areenan et al., 2002 ) testosterone causes acute 
endothelium-dependent relaxation, mediated by nitric oxide. 
However, nitric oxide synthase (NOS) inhibition has no effect on 
relaxations to testosterone in rabbit coronary artery ( Yue et al., 
1995 ), rat aorta ( Honda et al., 1999 ) and pulmonary artery ( Jones 
et al., 2002 ). In addition, other studies with canine, rabbit, and 
pig coronary arteries ( Yue et al., 1995 ;  Chou et al., 1996 ;  Deena-
dayalu et al., 2001 ) and rat thoracic aorta and mesenteric arterial 
bed ( Honda et al., 1999 ;  Ding and Stallone et al., 2001 ;  Tep-
areenan et al., 2002 ) have reported that endothelium and NO -
independent vasorelaxations induced by testosterone. We have 
recently shown that testosterone  – induced vasodilatation in 
human internal mammary and radial arteries is preserved in 
endothelial denuded vessels or in the presence of inhibitors of 
nitric oxide syntase or guanylate cylase ( Yildiz et al., 2005a  and 
unpublished observation).   
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 Potassium  –  channel opening and calcium antagonistic 
actions 
 A number of studies have provided evidence of a modulatory 
role for testosterone upon potassium channel function.  Chou et 
al. (1996)  and  Honda et al. (1999)  previously showed that glib-
enclamide, an ATP-sensitive K     +      channel (K ATP ) inhibitor, reduced 
vasorelaxation to testosterone in dog coronary artery and rat 
thoracic aorta, respectively. On the other hand,  Ding and Stal-
lone (2001)  demonstrated that neither incubation with gliben-
clamide nor tetraetylammonium (TEA), a non-selective K     +      
channel inhibitor, had any effect on the vasodilatory response to 
testosterone in rat thoracic aorta. But they showed that incuba-
tion with 4-aminopyridine (4-AP), a voltage-gated K     +      channel 
(K V ) inhibitor, signifi cantly reduced vasorelaxation to testoster-
one and they therefore proposed that testosterone acts  via  K V  
channel opening action.  Deenadayalu et al. (2001)  recently dem-
onstrated that TEA inhibited vasorelaxation to testosterone in 
pig coronary arteries. Moreover,  Deenadayalu et al. (2001)  con-
fi rmed that testosterone opened large-conductance Ca 2    +     -acti-
vated K     +      channels (BK Ca ) in single pig coronary myocytes by 
direct evidence from patch-clamp studies. In our recent study, 
we have also observed an inhibitory effect of TEA, but not glib-
enclamide and 4-AP, on vasorelaxation to testosterone, suggest-
ing that testosterone  – mediated vasodilatation may occur  via  
activation of BK Ca  channels in human internal mammary artery 
( Yildiz et al., 2005a ). However in human radial artery, glibencla-
mide, but no other K     +      channel inhibitors, reduced vasorelaxa-
tion to testosterone, suggesting involvement of K ATP  channels 
(unpublished observations). 
 Interestingly,  Deenadayalu et al. (2001)  reported a decrease in 
the response to testosterone under similar conditions with our 
study in IMA ( Yildiz et al., 2005a ), namely less testosterone 
relaxation after KCl-precontraction compared to that after 
PGF 2 �  -precontraction. In our study, we have found a signifi cant 
reduction in the effi cacy of testosterone in vessels precontracted 
with KCl compared to PGF 2 �  . An explanation of these results 
may lie with the potassium channel function which is compro-
mised in conjunction with the vasodilatory effi cacy of testoster-
one. An alternative explanation of the dilatory action testosterone 
may lie with the types of calcium channels involved. PGF 2 �   acts 
primarily at the prostanoid receptors gated directly to receptor-
operated calcium channels (ROCCs) ( Tosun et al., 1997 ). This 
receptor stimulation also results in phosphatidylinositol 4,5 
bisphosphate hydrolysis ( Raymond et al., 1983 ) with resultant 
generation of inositol triphospate, which triggers calcium release 
from the intracellular stores ( Berridge, 1987 ). The high extracel-
lular potassium gradient generated by milimolar KCl triggers 
membrane depolarization with subsequent activation of voltage 
-operated calcium channels (VOCCs). Recently, Jones et al. ( Jones 
et al., 2003c and 2004 ) reviewed the literature and proposed 
that the variance in the testosterone  – induced dilatation follow-
ing preconconstiction with KCl and PGF 2 �  , could be due to a dif-
fering inhibitory effi ciacy of testosterone upon ROCCs and 
VOCCs. 
 A number of previous studies in isolated vessel preparations 
have supported the idea that testosterone acts as a Ca 2    +      channel 
antagonist, by inhibiting VOCCs. It has previously been demon-
strated that testosterone inhibits VOCCs in isolated rat pulmo-
nary ( Jones et al., 2002 ), rat coronary ( English et al., 2002 ) and 
porcine coronary arteries ( Crews and Khalil, 1999b ). These stud-
ies have indicated that of the multiple pathways underlying Ca 2    +      
signalling and homeostasis in vascular smooth muscle, testo-

sterone appears specifi cally to target voltage-gated Ca 2    +      entry 
via L-type Ca 2    +      channels, whilst agonist mobilization of Ca 2    +      
and consequent capacitative calcium entry remain unaffected 
( Jones et al., 2002 ;  English et al., 2002 ;  Crews and Khalil, 1999b ; 
 Scragg et al., 2004 ). Moreover,  Scragg et al. (2004)  have employed 
whole-cell patch clamp recordings under non-physiological 
conditions and they have shown that testosterone inhibits L-
type Ca 2    +      channels. In recent study,  Hall et al. (2006)  have 
employed fl uorometric recordings and they have provided evi-
dence that testosterone can block both native and recombinant 
L-type voltage-gated Ca 2    +      channels with IC 50  values within or 
close to levels of circulating testosterone concentrations. VOCC 
inhibition by testosterone is rapid (within 2   minutes), making it 
unlikely to be mediated through a genomic effect.  Hall et al. 
(2006)  have also observed that nifedipine, a L-type Ca 2    +      channel 
blocker, blocks the effects of testosterone and they have pro-
posed that some of the benefi cial cardiovascular effects of testo-
sterone arise from its ability to act like a dihydropyridine 
antihypertensive to suppress Ca 2    +      entry and so promote vasodi-
lation. In our laboratory, we have observed that testosterone at 
concentrations of 100    � M and higher inhibited CaCl 2   – induced 
contractions in human IMA ( Yildiz et al., 2005a ). Consistent with 
our observation, it has been recently demonstrated that testo-
sterone, at high concentrations, inhibits Ca 2    +      infl ux in rat aorta 
( Tep-areenan et al., 2003 ). 
 To date, the mechanism behind the vasodilatory action of testo-
sterone is still under debate and might be through either activa-
tion of K     +      channels or direct blockade of Ca 2    +      channels in 
vascular muscle cells.  Deenadayalu et al. (2001)  convincingly 
demonstrated that testosterone-mediated vasodilatation occurs 
via activation of K     +      channels by direct evidence from patch-
clamp study. On the other hand, only the study of  Hall et al. 
(2006)  has provided evidence for a direct calcium antagonistic 
effect of testosterone, so far. Indeed, either mechanism would 
allow vasodilatation from reduced Ca 2    +      infl ux through VOCCs 
(    �  �     Fig. 1  ).   

 Contradictory effects of testosterone on potassium 
channels 
 There is a complex-mixture of vessel-type dependent mecha-
nisms reported in previous studies about the type of the K     +      
channel involved in the vasodilatory action of testosterone. In 
rabbit, dog and pig coronary conduit arteries, testosterone acts 
 via  BK Ca  and K V  channel opening action, however testosterone -
induced vasodilation occurs  via  K ATP  channel opening action in 
dog coronary resistance arteries ( Yue et al., 1995 ;  Chou et al., 
1996 ;  Deenadayalu et al., 2001 ). Accordingly, testosterone acts 
 via  BK Ca  channel opening action in an human conduit artery, the 
IMA ( Yildiz et al., 2005a ). However, RA shows a resistance vessel 
characteristics as elastomuscular wall structure and a small 
diameter, and testosterone - induced vasodilation occurs  via  
K ATP  channel opening action in RA similar to resistance arteries 
(unpublished observations). Therefore, it may be suggested that 
testosterone preferentially stimulates the K V  and K Ca  channels in 
large conductance vessels, and the K ATP  channel in small resist-
ance vessels. In fact, there are some differences in the vascular 
reactivity between large conductance and small resistance arter-
ies  Yokoshiki and Sperelakis, 2003 . For example, it was reported 
that adenosine, a metabolic regulator of coronary blood fl ow 
(probably via activating K ATP  channels and inhibiting L-type Ca 2    +      
current (t), preferentially blocked the action potential in the 
small coronary artery, but had no effect on the action potential 
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in the large coronary artery ( Harder et al., 1979 ). Likewise, the 
coronary dilating actions levcromakalim, of a K ATP  channel open-
ing drug, were heterogeneous, and it was more sensitive in small 
resistant coronary arteries ( Sato et al., 1994 ). It was also reported 
that the resting tone of large coronary conductance vessels was 
little affected by glibenclamide ( Shimizu et al., 2000 ), whereas 
that of small resistance vessels was affected. Hence, the tone of 
the small vessels is likely to be regulated by the glibenclamide-
sensitive K ATP  channel ( Yokoshiki et al., 1997 ). Another impor-
tant fi nding is that testosterone relaxes human internal 
mammary and radial arteries but it has no vasodilatory effect on 
human umbilical arteries (HUA) ( Yildiz et al., 2005a ). HUA is 
unique, since it shows a conductance vessel characteristics as 
elastic wall structure and it has a small diameter. Functional K v  
and BK Ca  channels are present in HUA ( Yildiz et al., 2006a ). How-
ever, this artery seems to lack the non-genomic signalling path-
way involved in testosterone-induced vasodilation.   

 Potential factors infl uencing testosterone responses 
 An important point of the previous studies which should be 
addressed was that high concentrations of testosterone (in the 
micromolar range) were required to elicit vasodilation. Most of 
these studies were carried out in isolated vessel preparations, 
therefore the effects of testosterone might occur only at supra-
physiological concentrations. There may be a concentration gra-
dient from the perfusate down to the cell membrane as a result 
of impaired delivery of the testosterone molecule or binding to 
various proteins. There may be a consequence of access to 
smooth muscle ion channels; this could be restricted in more 
intact preparations lacking their natural blood supply as the 
lipophilic androgen would need to cross some barriers before 
reaching its presumed target on smooth muscle cells ( Hall et al. 
2006 ). 
 Another point of the previous studies which should be looked 
up was the latency for the vasodilating effect of testosterone. In 
most of the mechanistic studies cited in this review, free testo-
sterone analogues were used, and the vasodilatory action of tes-
tosterone was rapid, occuring within minutes. As mentioned 
above, the covalent linkage of testosterone analogues to a mac-
romolecule, such as albumin, has no effect upon the timescale 
and magnitude of the vasodilatory response to testosterone 
( English et al., 2000d ;  Ding and Stallone, 2001 ). Therefore, the 
conjugation of testosterone to albumin eliminates the permea-
bility of testosterone to the cell membrane, and thereby, these 
fi ndings again suggest a non-genomic action. 

 The issue of how testosterone is solved and delivered is of great 
importance. Different studies in humans and animals have used 
different solvents in different concentrations (e.g. ethanol and 
dimethysulphoxide). Solvents have unselective effects on ion 
channel activity ( Kunz et al., 2006 ), within miliseconds, which 
could interfere with selective actions of testosterone. In previ-
ous studies however, no signifi cant relaxant effect of fi nal con-
centrations of the solvents has been reported ( Yue et al., 1995 ; 
 Chou et al., 1996 ;  Costarella et al., 1996 ;  Honda et al., 1999 ;  Eng-
lish et al., 2000d ,  Ding and Stallone, 2001 ;  Tep-areenan et al., 
2002 ;  Jones et al., 2002 ;  Tep-areenan et al., 2003 ). In our experi-
ments, we did not let the fi nal ethanol concentration in the bath 
to exceed 0.1     %  (v / v), since it might induce relaxation itself 
( Yildiz et al., 2005a ).   

 Variability of testosterone -induced vasodilatory 
responses 
 An interesting fi nding in our observations was the marked vari-
ability of responses to testosterone in various subjects in IMA 
( Yildiz et al., 2005a ). We have recently investigated the relation-
ship of this variability with cardiovascular risk factors ( Yildiz et 
al., 2005b ). Cumulative relaxations to testosterone after precon-
traction with KCl have been examined in IMA segments from 
patients with identifi ed cardiovascular risk factors such as 
hypercholesterolemia, diabetes, hypertension, smoking, age, 
gender, body mass index (BMI), and number of occluded vessels. 
Testosterone responses were signifi cantly diminished in sub-
jects with 3 compared with 1 risk factor. Hypercholesterolemia 
has independently infl uenced testosterone responses by signifi -
cantly decreasing its maximum, and smoking has signifi cantly 
decreased the sensitivity to testosterone. In our study, aging is 
one of the factors related to diminished testosterone responses. 
In accordance,  English et al. (2000b)  have also demonstrated 
that aging reduces the testosterone  – induced relaxation in coro-
nary arteries from male Wistar rats in vitro. We have concluded 
that the variability observed in testosterone-induced vascular 
relaxations may in part be related to differences in risk factors 
present among the individuals studied ( Yildiz et al., 2005b ).   

 Clinical relevance and future research 
 Testosterone-induced vasodilation might protect against cardio-
vascular disease, possibly by arterial vasodilation and reduced 
blood pressure (Thompson and Khalil, 1999;  Wu and von Eck-
ardstein, 2003 ;  Littleton-Kearney and Hurn, 2004 ); thus animal 
studies have shown that testosterone therapy improves coro-
nary blood fl ow ( Scheuer et al., 1987 ). In humans, testosterone 
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  Fig. 1           Proposed model for actions of 
testosterone. The opening of K     +      channels 
in the cell membrane of smooth muscle 
cells in arteries by testosterone increases K     +      
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has been shown to cause a dose dependant vasodilation both in 
vitro and in vivo. When testosterone is instilled into the left cor-
onary artery, vasodilation ensues and coronary fl ow increases 
( Webb et al., 1999a ). More importantly, acute administration of 
intravenous testosterone improves exercise tolerance and 
reduces angina threshold in men with coronary artery disease 
( Rosano et al., 1999 ;  Webb et al., 1999b ). These effects were 
observed using supraphysiological doses, but chronic adminis-
tration of low physiological replacement doses of testosterone 
over three months in men with chronic stable angina signifi -
cantly improved exercise tolerance and angina threshold ( Eng-
lish et al., 2000e ). 
 As summarised in this review, several lines of evidence indicate 
that testosterone can exert acute vasorelaxing effects. This action 
of testosterone is independent of the classical androgen receptor 
which mediates its effects genomically, suggesting a non-
genomic action. The majority of vasodilatory action of testoster-
one seems to be independent of the endothelium. Recent 
evidences suggest that the mechanism behind the vasodilatory 
action of testosterone is through either activation of K     +      channels 
or blockade of Ca 2    +      channels in vascular muscle cells. The vari-
ance in the species and the vascular preparations used may con-
tribute to the complex-mixture of vessel-type dependent 
mechanisms reported in this review. 
 Mechanistic studies conducted in human preparations are 
important to extrapolate our knowledge about vasoactive sub-
stances to clinical cardiovascular situations.Therefore, to test the 
effects of testosterone as well as other vasoactive substances in 
different human arterial beds is of considerable interest ( Yildiz 
et al., 1996a and b ;  Yildiz et al., 2006a and b ). We have recently 
shown that testosterone induces vasodilation in human arteries 
such as IMA and RA, which are the grafts of choice for myocar-
dial revascularization to replace diseased coronary vessels 
( Yildiz et al., 2005a ). We have tried testosterone on UA and 
observed no response. Previously, Fausett et al also reported that 
testosterone had no relaxant effect on human umbilical artery 
( 1999 ). Obviously, additional studies in human arteries would be 
of interest to make clear the mechanism of vasodilatory effect of 
testosterone in different vascular beds. 
 Taken together, these fi ndings provide evidence for the marked 
vasodilating effect induced by testosterone. Further studies, 
especially in different human vascular preparations and with 
cellular patch-clamp techniques, are essential to understand the 
exact mechanism of the effect testosterone and to fully realise 
the therapeutic potential of testosterone therapy in male patients 
with coronary artery disease.         
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