filled 11/30/05

Request # 18654102

Mail To:

Fordham Health Sciences Library (OhioLINK#547) Interlibrary Loan

3640 Colonel Glenn Highway Dayton, OH 45435-0001 ARIGIA

NOV 28, 2005

DOCLINE: Journal Copy Epayment

Title:

Gynecologic and obstetric investigation.

Title Abbrev:

Gynecol Obstet Invest

Citation:

2003;55(1):25-31
Long-term administration of intravaginal dehydroep

Article: Author:

Suh-Burgmann E; Sivret J; Duska L; Del Carmen M; Seiden M

NLM Unique ID:

7900587 Verify: PubMed

PubMed UI:

12624548

ISSN:

0378-7346 (Print) 1423-002X (Electronic)

Publisher:

Karger., Basel, New York

Copyright:

Copyright Compliance Guidelines

 ${\bf Authorization:}$

barb

Need By:

N/A \$15.00

Maximum Cost: Patron Name:

Glaser, Rebecca - TN: 77790

Referral Reason:

Not owned (title)

Library Groups:

EFTS, RESOURCE

Phone:

1.937.775-4110

Fax:

1.937.775-2232

Email: Ariel: fill@www.libraries.wright.edu

Arier.

130.108.121.58

Comments:

GMR-RL PLEASE ARIEL IF POSSIBLE. THANKS

Routing Reason:

Routed to OHUOSU in Serial Routing - cell 2

Received:

Nov 29, 2005 (07:08 AM EST)

Lender:

Ohio State University/ Columbus/ OH USA (OHUOSU)

This material may be protected by copyright law (TITLE 17,U.S. CODE)

Bill to: OHUDAC

Fordham Health Sciences Library (OhioLINK#547)

Interlibrary Loan

3640 Colonel Glenn Highway

Dayton, OH 45435-0001

from greenters and

ıg JR, ı me-

lating vari-1990

aering logical

r Rev

alou J, ca M,

esence ceptor in careffects J Biol Gynecologic and Obstetric Investigation

Gynecol Obstet Invest 2003;55:25–31 DOI: 10.1159/000068953

Received: June 10, 2002 Accepted after revision: November 25, 2002

Long-Term Administration of Intravaginal Dehydroepiandrosterone on Regression of Low-Grade Cervical Dysplasia – A Pilot Study

Elizabeth Suh-Burgmann Julia Sivret Linda R. Duska Marcella Del Carmen Michael V. Seiden

Divisions of Gynecologic Oncology and Hematology Oncology, Massachusetts General Hospital, Boston, Mass., USA

ngwali S, La colitis epithe t 1999

ner JA xisome s targe kocyte rioscler

Iernan SJ: The pregulaelper I I:1364

iylor

Key Words

Chemoprevention · Dehydroepiandrosterone · Neoplasia · Preinvasive cervical disease · Cervix · Dysplasia

Abstract

Although many dysplastic cervical lesions regress spontaneously, treatment is common due to concern for progression. Lesions persist or progress in women whose immune systems are unable to clear infection by human papillomavirus (HPV). Dehydroepiandrosterone (DHEA) is an adrenal steroid that has both immune modulatory and tumor inhibitory activity. A pilot study was conducted to examine the feasibility, safety and potential efficacy of intravaginal DHEA in women with low-grade cervical dysplasia. Twelve women with low-grade dysplasia, confirmed by colposcopic exam, were given 150 mg of intravaginal micronized DHEA daily for up to 6 months. Follow-up evaluations of the cervix were done at 3 and 6 months of use. DHEA, DHEA-S, androstenedione and testosterone levels were also measured. By the end of the study period, 10 of the 12 women (83%) had no evidence of dysplasia; the remaining 2 had normal colposcopic exams but cytology showing atypical cells of undetermined significance. There were no serious side effects. Androstenedione levels were elevated at 3 months, whereas testosterone levels were unchanged over the course of treatment. The results suggest that intravaginal DHEA is safe and well tolerated and may promote regression of low-grade cervical lesions. Further study is needed to establish efficacy.

Copyright © 2003 S. Karger AG, Basel

Introduction

With the increase in Pap smear screening, industrialized nations have seen a dramatic decrease in the incidence of cervical carcinoma. However, the incidence of low-grade cervical intraepithelial neoplasia has proportionally increased, with an estimated 2.5 million women diagnosed annually in the USA [1]. The management of patients with low-grade cervical disease is currently an area of controversy. Prospective and retrospective studies demonstrate a 60% spontaneous regression rate of these low-grade lesions without treatment, with 30% persisting as low-grade dysplasia and 10% progressing to more severe dysplasia and rarely, carcinoma [2]. When follow-up can be assured, current guidelines advocate managing

Fax + 41 61 306 12 34 E-Mail karger@karger.ch www,karger.com © 2003 S. Karger AG, Basel 0378-7346/03/0551-0025\$19.50/0

Accessible online at: www.karger.com/goi these patients with repeat Pap smears at regular intervals. Treatment is indicated if progression of disease occurs, or if the low-grade disease persists. In practice, however, women with low-grade dysplasia frequently receive treatment with ablation or excision because of the inability to predict whose disease will progress.

In dysplastic cervical lesions, there is an increased rate of cell division with a proliferative expansion of abnormal basal epithelial cells. Over time, these cells can become transformed into malignant cells leading to cervical cancer. The role of human papillomavirus (HPV) as the etiologic agent in this process is now well established. However, the factors determining subsequent resolution or progression of early dysplastic lesions are not well understood, although it is clear from epidemiologic data that the immune system plays a critical role. Recognition of the importance of immune function in the progression to malignancy has led to the designation of cervical cancer as an AIDS-defining diagnosis, with the relative risk of developing invasive cervical cancer among HIV-positive women being proportional to the degree of immunosuppression [3]. Even in the absence of immunosuppression, recent studies have confirmed that cervical dysplasia develops in those individuals whose immune systems are unable to clear HPV, resulting in persistent infection [4, 5]. Among cigarette smokers, a decrease in the numbers of Langerhans' cells and CD4 cells in cervical stroma was demonstrated [6, 7], suggesting that the increased risk of dysplasia seen in association with tobacco use may be due, at least in part, from local immune suppression. The regression of early dysplasia, therefore, appears to depend on the ability of the immune system to eradicate virally infected hyperproliferative cells. The specific immune functions involved and whether they represent targets for prevention or treatment remains unclear.

Identification of a chemopreventive agent for preinvasive cervical disease would have a significant impact both through reduction of morbidity from invasive treatment as well as cost, currently estimated between USD 1.6 and 6 billion annually [8, 9]. A substance with potential chemopreventive action which has attracted recent attention is dehydroepiandrosterone (DHEA). In the second publication of Clinical Development Plans from the National Cancer Institute, Division of Cancer Prevention and Control, DHEA was identified as one of 16 promising chemopreventive agents deserving further study [10]. DHEA is an adrenal steroid whose levels decline with age and whose physiologic role is incompletely understood, although it appears to oppose many of the immunosuppressive effects of cortisol [11]. Interest in DHEA has grown

because of reports finding potentially beneficial effects of the hormone on immune function and tumor inhibition. In mice, injection of DHEA resulted in significant epithelial protection against lethal herpes virus type 2 encephalitis and systemic coxsackievirus B4 infection [12]. Experiments using a mouse two-stage skin tumorigenesis model demonstrated that topical DHEA treatment inhibits tumor initiation as well as tumor promoter-induced epidermal hyperplasia and promotion of papillomas [13]. Additional studies have shown DHEA to inhibit in vivo growth of spontaneous mammary cancers [14], chemically induced cancers of the lung [15] and colon [16], as well as in vitro growth of thyroid [17], liver [18], human pancreatic [19], and melanoma cell lines [20]. In a rat chemical carcinogenesis model, both early and delayed DHEA administration resulted in significant protection against prostate carcinogenesis, suggesting it can suppress the progression of existing preneoplastic lesions to invasive disease [21].

101

400

避費

n(M

igit)

da

4

e de la comp

164

100

W.M

odka Odka

iaap

142

1

Tinn 1

id no

The state of

Ġ,

n be

Despite these promising findings, there have been no published studies examining the use of DHEA as a chemopreventive agent in humans. This may be due to the difficulty in finding a setting in which to study the potential immune-enhancing and anti-tumor activities of DHEA. Preinvasive cervical disease provides a unique opportunity as it is a lesion in which abnormal cell growth is the cardinal feature, and whose outcome, as a virally mediated disease, is likely to depend on cell-mediated immune function. We therefore sought to investigate whether DHEA promotes regression of preinvasive cervical disease. Vaginal administration was chosen because of the potential for higher local concentrations at the cervix. Although one previous published study had shown that DHEA was well absorbed and tolerated when given as a 150-mg vaginal tablet, the study involved single dosing of DHEA and did not address the tolerability of long-term use [22]. Therefore, since long-term dosing had not been previously studied, a pilot study was conducted to first assess the safety and feasibility of intravaginal DHEA administration in women with low-grade cervical dysplasia.

Methods

The study was opened after Food and Drug Administration requirements regarding the manufacture and quality control of the DHEA formulation were satisfied and the investigative protocol was approved by the Dana Farber/Partners Cancer Center Institutional Review Board, and the Mallinckrodt General Clinical Research Center at the Massachusetts General Hospital. Women receiving care at

s of ion the ıalieriodel tuderddi-VIVO icalwell panemi-**IEA** iinst

the

isive

n no

che

> the

oten-

S 0

lique

owth

irally

iated

igate

ervi

ise of

rvix

1 that

1 as a

ingo

-term

been

) firs

HEA

l dys

Hospital for whom cervical cytology demonstrated a low-grade squamous intraepithelial lesion, according to the Bethesda system criteria, underwent colposcopic exam and indicated biopsies and/or endocervical curettage. If the results of the colposcopic exam and histology were also consistent with low-grade dysplasia, patients were offered entry into the study. The length of the study period was 6 months. Patients were excluded for the following reasons: pregnant or actively desiring pregnancy, severe co-morbid illness, active hepatic dysfunction or active psychiatric illness, history of AIDS, status post solid organ transplant or bone marrow transplant, presence of concomitant high-grade cervicovaginal dysplasia, or inability for reliable follow-up. The current management of patients with low-grade cervical dysplasia in these clinics is repeat Pap smear and colposcopy with biopsies and/or endocervical curettage as indicated, every 3-4 months for 1 year, with treatment if disease is persistent or if progression to more severe dysplasia occurs. This follow-up protocol was not altered by participation in the study.

After informed consent was obtained, patients were given a 1week supply of DHEA tablets with instructions to place one tablet high in the vagina at bedtime daily. DHEA was provided to patients as 150-mg pharmacopoeia-grade vaginal micronized tablets. Patients were instructed not to use other vaginal medications or oral DHEA formulations while participating in the study. Initial baseline laboratory tests at study entry included urine pregnancy test, SGOT, DHEA, androstenedione and testosterone. Follow-up blood testing for DHEA levels was performed 1 week after starting the medication at which time patients were given a 3-month supply of pills. Patients were then followed as they would be under standard care for their cervical disease, returning at 3- and 6-month intervals for repeat Pap smear and colposcopy. Biopsy and endocervical curettage were done at the time of the follow-up visit only if there was an indication based on findings at colposcopic exam. Repeat blood testing for SGOT, DHEA, androstenedione and testosterone levels were performed immediately following the 3- and 6-month visits. In addition, patients were given diaries in which to record pill use and side effects and instructed to call the study investigators with any unusual symptoms attributable to the DHEA use.

Statistical analyses of DHEA, DHEA-S, androstenedione and testosterone levels were done using the Student's t test for paired samples.

Results

Fourteen women were enrolled in the study; however, 2 women withdrew from the study before beginning any medication. The mean age of the 12 women who began using the intravaginal DHEA formulation was 30.6 years (range 20-44); all were premenopausal. Only 1 patient was a smoker. All women had a low-grade squamous intraepithelial lesion on cervical cytology and underwent colposcopy; the diagnosis was confirmed histologically for 9 of the 12 women by colposcopic directed biopsy and for 1 woman by endocervical curettage prior to enrollment. Two women had the diagnosis based on cervical cytology and colposcopy alone.

the Gillette Women's Cancer Center at the Massachusetts General

through the 3-month visit. Seven patients continued for the full 6 months of treatment. Although none of the patients reported difficulty in self-administration, the daily dosing and length of time of treatment were anticipated to be the main obstacles to compliance. Patients were questioned regarding compliance at each visit. No patient reported lapses in self-administration of more than 2 days. There were no reports of vaginal discomfort or abnormal discharge although some patients noted pill fragments up to 6 h after application. Two patients withdrew from the study due to attributed side effects of the medication. One patient reported symptoms of dysuria at 3 months and 1 complained of acne, which she noted at approximately 4 months of therapy. The patient with dysuria had not had any previous episodes of dysuria during DHEA use and did not complain of symptoms of vaginal irritation or discharge. Her urinalysis was normal and the symptom rapidly resolved without treatment. Both of these patients had had apparent regression of disease at the 3-month visit and both elected to discontinue the study when the symptoms appeared. There were no serious adverse events in the study. Liver function as measured by SGOT remained normal in all patients except 1, who had a transient increase in SGOT to 88 at the 3month visit (institutional upper limit of normal = 25). Repeat SGOT testing was normal and the patient continued the study with a subsequently normal SGOT at 6 months. Despite the fact that patients were counseled not to become pregnant during the study, 2 patients became pregnant and were withdrawn from the study. Both patients had reported condoms as their method of birth control. One patient moved from the study area after 3 months.

All 12 women who began the medication continued

DHEA levels were available for 12 patients for the baseline and 1-week values, for 9 patients at 3 months and for 5 patients at 6 months. For the available values, DHEA levels increased significantly over baseline at 1 week and 3 months, but not at 6 months (p = 0.004, 0.004 and 0.43 respectively). For the same time intervals, DHEA-S levels were available for 12, 10, 11 and 5 patients respectively. DHEA-S levels were significantly elevated over baseline at 1 week but not subsequently. Testosterone levels were available for comparison at baseline and 3 months for 9 patients, and at 6 months for 6 patients. There was no statistically significant increase in testosterone levels from baseline seen at either 3 or 6 months (p = 0.36, p = 0.17). Androstenedione levels were significantly elevated compared to baseline at 3 months (p = 0.006), but not at 6 months (p = 0.09) (fig. 1a-d).

tration of the col was ution h Cer

care

rmen

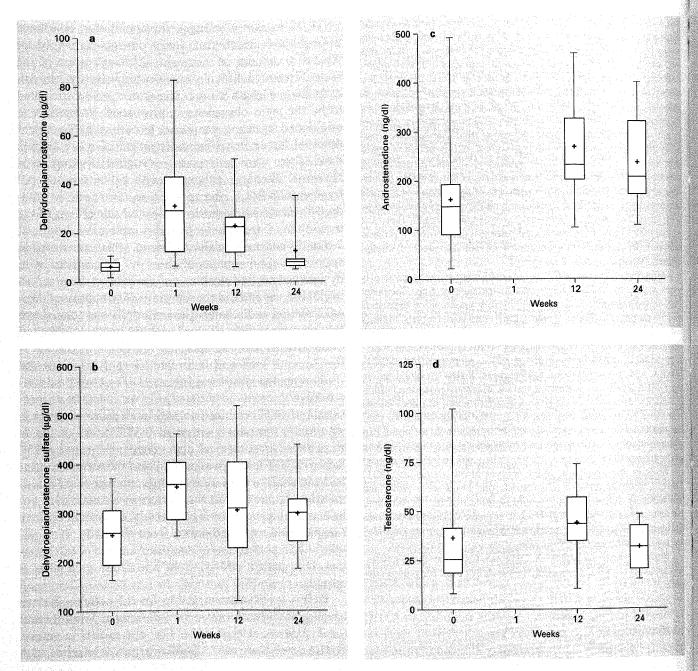


Fig. 1a-d. Box plots showing change in serum levels of a dehydroepiandrosterone (DHEA), b dehydroepiandrosterone sulfate (DHEA-S), c androstenedione and d testosterone during intravaginal administration of DHEA in women with low-grade cervical dysplasia.

Twelve patients took the drug for at least 3 months and returned for follow-up examination. Of the 12 patients evaluated, 10 (83%) had apparent regression of disease with no evidence of dysplasia on follow-up during the study period (table 1). Seven of these had regression at the

3-month exam; 3 had regression at 6 months. The patient who smoked cigarettes during the study was included in the group who regressed at 6 months. There were no patients who had normal examinations at 3 months who had recurrent dysplasia at 6 months. The remaining 2

ofrsq (for

Models of

Vitaloa

102200

Ottal

l digera

Table 1. Results of 3- and 6-month follow-up colposcopic evaluation, Pap smear, indicated biopsies and/or endocervical curettage (ECC) for women with low-grade cervical dysplasia (LGSIL) using intravaginal dehydroepiandrosterone (DHEA)

Patient	Baseline	3-Month evaluation	6-Month evaluation
1	Pap: LGSIL	Biopsy: LGSIL Negative ECC	Negative biopsy × 2 Negative ECC Negative Pap
2	Pap: LGSIL Biopsy: LGSIL	Negative ECC Negative Pap	Negative ECC Negative Pap
3	Pap: LGSIL Biopsy: LGSIL	Pap: 'ASCUS favor reactive' Negative biopsy Negative ECC	Off study
4	Pap: LGSIL Biopsy: LGSIL	Pap: 'rare cells showing mild dysplasia' Negative biopsy Negative ECC	Negative biopsy × 2 Negative Pap
5	Pap: LGSIL Biopsy: LGSIL	Negative Pap Negative ECC	Off study
6	Pap: LGSIL Biopsy × 2: LGSIL	Negative biopsy × 2 Negative ECC Negative Pap	Negative biopsy Negative ECC
7	Pap: LGSIL Biopsy: LGSIL	Pap: ASCUS Negative colposcopy	Off study
8	Pap: LGSIL Biopsy: LGSIL	Pap: ASCUS Negative colposcopy	Negative Pap Negative colposcopy
9	Pap: LGSIL ECC: LGSIL	Negative Pap Negative ECC	Off study
10	Pap: LGSIL	Negative Pap Negative biopsy	Negative Pap Negative colposcopy
11	Pap: LGSIL Biopsy: LGSIL	Pap: ASCUS Negative colposcopy	Negative Pap Negative colposcopy
12	Pap: LGSIL Biopsy ×2: LGSIL	Negative Pap Negative biopsy	Off study

roste

patients had normal colposcopicexaminations at the end of the study period, but cytologic smears showing atypical squamous cells of undetermined significance (ASCUS).

Discussion

tiented in e no who

ing/2

The mechanism by which DHEA inhibits tumor growth is unknown. However, DHEA levels appear to be strongly correlated with levels of immune cytokines. In a recent study examining the correlation between sex hor-

mones and cytokine secretion in vivo, levels of DHEA-S in premenopausal women were highly correlated with activity of interferon-γ-secreting cells [23]. In mouse models, DHEA has been found to have a direct affect on cytokine production. Mice injected with DHEA had significant increases in serum levels of interleukin (IL)-10, a potent differentiation factor of B lymphocytes [24]. IL-10 has also been shown to potentiate cytotoxic activity of HPV E7-specific CD8+ T lymphocytes in vivo [25]. Since it was observed that the age-related decline in DHEA levels mirrors decreases in certain aspects of immune func-

tion, initial human studies using DHEA were done in elderly populations to investigate whether a significant relationship exists. Oral DHEA (50 mg/day) was associated with enhanced natural killer cell cytotoxicity and number and higher levels of IL-2 secretion from activated T lymphocytes in postmenopausal women [26–28], and significant increases in several indices of immune function in elderly males [29]. Depressed DHEA levels seen in HIV disease have been correlated with cytokine dysregulation [30]. At the molecular level, DHEA was found to inhibit mammary carcinogenesis induced by polycyclic aromatic hydrocarbons via an inhibition of carcinogenactivating enzyme cytochrome P₄₅₀ 1A1 (CYP1A1) mRNA expression by a post-transcriptional mechanism [31].

The negative side effects of DHEA therapy have been related to increased androgen levels [32]. DHEA is metabolized in the liver and converted in peripheral tissues to androstenedione, dihydrotestosterone and testosterone. The only published long-term study used oral DHEA 200 mg/day for 3 months in premenopausal women with the only adverse side effect being increased acne, noted in 47% of individuals receiving DHEA [33]. In this doubleblind prospective clinical trial of systemic lupus patients, a significant decrease in the number of lupus flares were seen in the DHEA group, with acne being the only adverse effect. As the androgenic effects of DHEA stem from the metabolism of DHEA, vaginal administration of the drug which avoids the portal circulation and thereby modifies hepatic first-pass metabolism was chosen for use in this study. A previous randomized study compared 150 mg of vaginal micronized DHEA with oral DHEA and found that after single-dose vaginal administration, equivalent serum DHEA levels of approximately twice the baseline values were achieved without significant increases in DHEA-S or testosterone [22]. In this study, androstenedione but not testosterone levels were significantly higher during DHEA use. Acne was reported by only 1 patient and was noted after 4 months of use.

The study was aimed primarily at assessing the tolerability and potential side effects of long-term intravaginal DHEA use; the number of patients studied does not provide sufficient power to draw definite conclusions regarding efficacy. Nevertheless, of the 12 women treated, 10 (83%) had complete regression of dysplasia by colposcopic exam, Pap smear and indicated biopsies and/or endocervical curettage, with the remaining 2 patients having ASCUS cytology only. Regression rates for low-grade dysplasia have been reported between 40 and 70% [35, 36]; however, these rates are cumulative over 2–5 years of

observation. The expected regression rate at 3 and 6 months may be lower. Although the inherent variability in diagnosing and categorizing dysplasia may have influenced the results, we specifically did not require confirmatory biopsies on patients under treatment, since the primary purpose of the study was to evaluate the acceptability of the regimen in women whose care was otherwise unaltered from the standard follow-up surveillance for low-grade disease. Therefore, while these results are suggestive of a possible effect, further study in the form of a randomized controlled trial is needed to fully evaluate the activity of DHEA on regression of cervical dysplasia. The immune enhancing and anti-tumor activities of DHEA make it a promising potential therapeutic agent in the setting of preinvasive cervical disease. The results from this study suggest that long-term use of intravaginal DHEA is safe and well tolerated and may promote regression of low-grade cervical dysplasia.

Acknowledgements

The authors wish to thank Denise Whall-Strojwas, RN, Arlan F. Fuller, MD, and Karen Houck, MD, for their assistance, and to Hang Lee, PhD, for statistical support. The micronized DHEA formulation was generously provided by Dr. Charles Hakala, Belmar Pharmacy, Lakewood, Colo., USA.

References

it

'n

Ĭŀ.

h

ta

18

6

19.

f

lh

h

EA

el-

hi

1 1

0

nΕ

an.

tion

- Kurman RJ, Hensen DE, Herbst AL, Noller KL, Schiffman MH: Interim guidelines for management of abnormal cervical cytology. The 1992 National Cancer Institute workshop. JAMA 1994;271:1866-1869.
- 2 Ostor AG: Natural history of cervical intraepithelial neoplasia: A critical review. Int J Gynecol Pathol 1993;12:186–192.
- 3 Cohn JA, Gagnon S, Spence MR, Harrison DD, Kluzak TR, Langenberg P, Brinson C, Stein A, Hellinger J: Cervical Disease Study Group of the American Foundation for AIDS Research Community-Based Clinical Trials Network. The role of human papillomavirus deoxyribonucleic acid assay and repeated cervical cytologic examination in the detection of cervical intraepithelial neoplasia among human immunodeficiency virus-infected women. Am J Obstet Gynecol 2001;184:322-330.
- 4 Sung HY, Kearney KA, Miller M, Kinney W, Sawaya GF, Hiatt RA: Papanicolaou smear history and diagnosis of invasive cervical carcinoma among members of a large prepaid health plan. Cancer 2000;88:2283–2289.
- 5 Ho GY, Burk RD, Klein S, Kadish AS, Chang CJ, Palan P, Basu J, Tachezy R, Lewis R, Romney S: Persistent genital human papillomavirus infection as a risk factor for persistent cervical dysplasia. J Natl Cancer Inst 1995;87:1365–1371
- 6 Poppe WA, Drijkoningen M, Ide PS, Lauweryns JM, Van Assche FA: Langerhans' cells and L1 antigen expression in normal and abnormal squamous epithelium of the cervical transformation zone. Gynecol Obstet Invest 1996;41: 207-213.
- 7 Poppe WA, Ide PS, Drijkoningen MP, Lauweryns JM, Van Assche FA: Tobacco smoking impairs the local immunosurveillance in the uterine cervix. An immunohistochemical study. Gynecol Obstet Invest 1995;39:34–38.
- 8 American Social Health Association: Sexually Transmitted Diseases in America: How many cases and at what cost? Research Triangle Park, American Social Health Association, 1998.
- 9 Seigal J: The economic burden of sexually transmitted diseases in the United States; in Holmes K, Mardh P, Sparling P et al (eds): Sexually Transmitted Diseases, ed 3. New York, McGraw-Hill, 1999, pp 1367–1380.
- 10 Kelloff GJ, Crowell JA, Hawk ET, Steele VE, Lubet RA et al: Strategy and planning for chemopreventive drug development: Clinical Development Plans II. J Cell Biochem 1996; 26(suppl):54-71.
- 11 Canning MO, Grotenhuis K, de Wit HJ, Drexhage HA: Opposing effects of dehydroepian-drosterone and dexamethasone on the generation of monocyte-derived dendritic cells. Eur J Endocrinol 2000;143:687–695.

- 12 Loria RM, Padgett DA: Mobilization of cutaneous immunity for systemic protection against infections. Ann NY Acad Sci 1992;650: 363–366.
- 13 Pashko LL, Hard GC, Rovito RJ, Williams JR, Sobel EL, Schwartz AG: Dehydroepiandrosterone and 3β-methyladrost-5-en-17-one inhibit 7,12-dimethylbenz(a)anthracene-induced skin papillomas and carcinomas in mice. Cancer Res 1985;45:164–166.
- 14 Schwartz AG: Inhibition of spontaneous breast cancer formation in female C3H mice by longterm treatment with dehydroepiandrosterone. Cancer Res 1979;39:1129–1133.
- 15 Schwartz AG, Tannen RH: Inhibition of 7,12dimethylbenz(a)anthracene- and urethane-induced lung adenomas in A/J mice by long-term treatment with dehydroepiandrosterone. Carcinogenesis 1981;2:1335–1337.
- 16 Nyce JW, Magee PN, Hard GC, Schwartz AG: Inhibition of 1,2-dimethylhydrazine-induced colon tumorigenesis in Balb/c mice by dehydroepiandrosterone. Carcinogenesis 1984;5: 57-62.
- 17 Moore MA, Thamavit W, Tsuda H, Sato K, Ichibara A, Ito N: Modifying influence of dehydroepiandrosterone on the development of dihydroxy-di-n-propylnitrosamine initiated lesions in the thyroid, lung and liver of F344 rats. Carcinogenesis 1986;7:311-316.
- 18 Weber E, Moore MA, Bannasch P: Phenotypic modulation of hepatocarcinogenesis and reduction in N-nitroso-morpholine-induced hemangiosarcoma and adrenal lesion development in Sprague-Dawley rats by dehydrocpiandrosterone. Carcinogenesis 1988;9:1191– 1195.
- 19 Melvin WS, Bosos LG, Muscarella P et al: Dehydroepiandrosterone-sulfate inhibits pancreatic carcinoma cell proliferation in vitro and in vivo. Surgery 1997;15:392–397.
- 20 Kawai S, Yahata N, Nishida S, Nagai K, Mizushima Y: Dehydroepiandrosterone inhibits B16 mouse melanoma cell growth by induction of differentiation. Anticancer Res 1995;15: 427-431.
- 21 Rao KV, Johnson WD, Bosland MC, Lubet RA, Steele VE et al: Chemoprevention of rat prostate carcinogenesis by early and delayed administration of dehydroepiandrosterone. Cancer Res 1999;59:3084–3099.
- 22 Casson PR, Straughn AB, Umstod ES et al: Delivery of dehydroepiandrosterone to premenopausal women: Effects of micronization and nonoral administration. Am J Obstet Gynecol 1996;174:649-653.

- 23 Verthelyi D, Klinman DM: Sex hormone levels correlate with the activity of cytokine-secreting cells in vivo. Immunology 2000;100:384–390.
- 24 Cheng GF, Tseng J: Regulation of murine interleukin-10 production by dehydroepiandrosterone. J Interferon Cytokine Res 2000;20: 471-478.
- 25 Santin AD, Hermonat PL, Ravaggi A, Bellone S, Pecorelli S et al: Interleukin-10 increases Th1 cytokine production and cytotoxic potential in human papillomavirus-specific CD8(+) cytotoxic T lymphocytes. J Virol 2000;74: 4729-4737.
- 26 Casson, PR, Andersen RN, Herod HG, Stentz FB, Straughn AB et al: Oral dehydroepiandrosterone in physiologic doses modulates immune function in postmenopausal women. Am J Obstet Gynecol 1993;169:1536–1539.
- 27 Daynes RA, Dudley DJ, Araneo BA: Regulation of murine lymphokine production in vivo. II. Dehydroepiandrosterone is a natural enhancer of interleukin-2 synthesis by helper T cells. Eur J Immunol 1990;20:793-802.
- 28 Suzuki T, Suzuki N, Daynes RA, Engleman EG: Dehydroepiandrosterone enhances IL-2 production and cytotoxic effector function of human T cells. Clin Immunol Immunopathol 1991;61:202-211.
- 29 Khorram O, Vu L, Yen SSC: Activation of immune function by dehydroepiandrosterone in age-advanced men. J Gerontol A Biol Sci Med Sci 1997;52:M1-M7.
- 30 Clerici M, Galli M, Bosis S, Gervasoni C, Moroni M, Norbiato G Immunoendocrinologic abnormalities in human immunodeficiency virus infection. Ann NY Acad Sci 2000;917:956–961.
- 31 Ciolino HP, Yeh GC: The steroid hormone dehydroepiandrosterone inhibits CYP1A1 expression in vitro by a post-transcriptional mechanism. J Biol Chem 1999;274:35186–190.
- 32 Mortola JF, Yen SSC: The effects of oral dehydroepiandrosterone on endocrine-metabolic parameters in post-menopausal women. J Clin Endocrinol Metab 1990;71:696–704.
- 33 Van Vollenhoven RF, Engleman EG, McGuire JF: Dehydroepiandrosterone in systemic lupus erythematosus. Results of a double-blind, placebo-controlled, randomized clinical trial. Arthritis Rheum 1995;38:1826–1831.
- 34 Holowaty P, Miller AB, Rohan T, To T: Natural history of dysplasia of the uterine cervix. J Natl Cancer Inst 1999;91:252-258.
- 35 Hording U, Junge J, Rygaard C, Lundvall F: Management of low-grade CIN: Follow-up or treatment. Eur J Obstet Gynecol Reprod Biol 1995;62:49-52.