
Batch Name: 61838

Batch Creator: SWORD 1

Batch Creation Date: 3/23/2005

Batch Creation Time: 11:21:28

Number of Pages: 5 [All]

Printed by: SWORD 1

Print Date: 3/23/2005

Print Time: 11:24:40

```
Received: from muaix01.mcs.muohio.edu (muaix01.mcs.muohio.edu [134.53.6.34])
               by sigerson.sword.org (8.12.3/8.12.3/Debian-7.1) with ESMTP id j2ML5xPG021643
                for <requests@sword.org>; Tue, 22 Mar 2005 16:05:59 -0500
Received: from mulnx12.mcs.muohio.edu (mulnx12.mcs.muohio.edu [134.53,6.67])
               by muaix01.mcs.muohio.edu (Switch-3.1.6/Switch-3.1.6) with ESMTP id j2ML2Dgv088524
                for <requests@sword.org>; Tue, 22 Mar 2005 16:02:13 -0500
Received: from muw2k04 (muw2k04.mcs.muohio.edu [134.53.6.18])
               by mulnx12.mcs.muchio.edu (Switch-3.1.6/Switch-3.1.6) with SMTP id j2ML2Dml005808
                for <requests@sword.org>; Tue, 22 Mar 2005 16:02:13 -0500
Received: From mcsaix02.mcs.muohio.edu ([134.53.253.26]) by muw2k04 (WebShield SMTP v4.5 MRla P0803.345);
                id 1111525182953; Tue, 22 Mar 2005 15:59:42 -0500
Received: from smsl.wright.edu (smsl.wright.edu [130.108.66.31])
                by mcsaix02.mcs.muohio.edu (Switch-3.1.6/Switch-3.1.6) with ESMTP id j2ML1Ctg101324
                for <requests@sword.org>; Tue, 22 Mar 2005 16:01:12 -0500
Received: from conversion-daemon.smsl.wright.edu by smsl.wright.edu
  (iPlanet Messaging Server 5.2 HotFix 1.26 (built Mar 31 2004))
  id <0IDR00501UEQDP@smsl.wright.edu>
  (original mail from illiad fordham@wright.edu) for requests@sword.org; Tue,
  22 Mar 2005 16:02:09 -0500 (EST)
Received: from staff150 ([130.108.169.150])
 by smsl.wright.edu (iPlanet Messaging Server 5.2 HotFix 1.26 (built Mar 31
  2004)) with ESMTP id <0IDR00F50UFLY00sms1.wright.edu> for requests0sword.org;
 Tue, 22 Mar 2005 16:02:09 -0500 (EST)
Date: Tue, 22 Mar 2005 21:02:53 +0000 (GMT)
From: Fordham Interlibrary Loan <illiad_fordham@wright.edu>
Subject: Please fill request
To: requests@sword.org
                                                                                                                                                                           PROTECTED BY COPPRICHT
Message-id: <OIDRO056EUFLDP@smsl.wright.edu>
Content-transfer-encoding: 7BIT
X-Scanned-By: MIMEDefang 2.45
This request has been forwarded from ILL by barb.
                                                                                                                                                         PROPERTY OF THE PROPERTY OF TH
                                                                                                                                                                  THE NATURAL PROPERTY.
Please fill this request for FORDHAM HEALTH SCIENCES LIBRARY
61838
Call Number: 81418030307
Journal Title: Fertility and Sterility
```

Journal Vol: 28 Journal Issue: 10 Journal Year: 1977

Article Title: Vaginal absorption of estrone and 17Beta estradiol

Article Author: Schiff Article Pages: 1063-66

Customer Information:

Name: Glaser, Rebecca Status: Faculty

Address: SOUTHVIEW (via Kettering Hosp),

E-Mail Address: rglaser@woh.rr.com

Phone: 937-885-4555

Department: School of Medicine

4 pp scanned 3/23/05

Was N. Mar. 53 (7 Yr The same of the sa

Sec. 4443

2000 A

F41.

ma_k

Yarra Sec.

70 Contraction in the second

i was 100

Str.

24 700

127 26 275

Tell Tiber

rical)

(2) Thu

(84 Both) 1911.1915

2000年度

22 277

or drawn

75 JUN 250

1000

: 比機

Person

to state 0

162

VAGINAL ABSORPTION OF ESTRONE AND 17β-ESTRADIOL*†

ISAAC SCHIFF, M.D.‡ DAN TULCHINSKY, M.D. KENNETH J. RYAN, M.D.

Menopausal Unit, Department of Obstetrics and Gynecology, Harvard Medical School and the Boston Hospital for Women, Boston, Massachusetts 02115

In order to study estrogen absorption from the vagina, 0.5 mg of unconjugated estrone (E_1) or 17 β -estradiol (E_2) was administered vaginally to 10 postmenopausal patients. A 29-fold increase in plasma E_2 and a 4-fold increase in plasma E, concentrations were observed 1 hour following the vaginal deposition of 0.5 mg of E_2 . Maximal decreases of 25% and 37% in plasma levels of follicle-stimulating hormone (FSH) and luteinizing hormone (LH), respectively, were observed at 5 hours following treatment. One hour after vaginal administration of 0.5 mg of $E_{\rm b}$, a 24-fold increase in plasma E_1 and a 3.7-fold increase in E_2 were observed. These increases were associated with a 30% decrease in plasma FSH and LH. These data indicate that the vaginal administration of E_2 or E_1 may be used to achieve physiologic blood levels of these estrogens. They further suggest that vaginal estrogens not be used in patients in whom systemic estrogen therapy is contraindicated.

17β-Estradiol (E2) is the predominant estrogen of ovulating women. The desire to achieve physiologic levels of E2 in the blood of patients requiring estrogen replacement has been hampered by lack of suitable means of administration. Ryan and Engel² have shown that the gut converts E₂ into estrone (E1). Yen et al. demonstrated that the oral administration of micronized E2 results in a more marked increase in circulating E1 than in E_2 . The subcutaneous instillation of E_2 , although effective, is not practical.4 It has long been known that estrogens can be readily absorbed from the vagina in levels sufficient to produce endometrial stimulation and bleeding.5 More recently, Widholm and Vertiainen found that menopausal women treated with sodium estrone sulfate vaginally had urinary excretion values of estrogens which were equivalent to those of reproductive, ovulating women. Since the vaginal mucosa is not known to contain a very active oxidoreductase system,7 it was logical to attempt the vaginal application of E2 and E1 in order to obtain physiologic levels of these estrogens.

MATERIALS AND METHODS

Ten healthy postmenopausal patients with a mean age of 65 years (range, 50 to 91) volunteered to participate in the study. All of the women had symptoms of vaginal atrophy and displayed decreased rugae of the vaginal mucosa. None of the patients had any ulcerations. Only two of the volunteers complained of vasomotor flushes, and incidentally were the only ones who had had a previous total abdominal hysterectomy and bilateral salpingo-oophorectomy (for benign disease). None of these women had received exogenous estrogens for at least 1 month prior to entering the study, and all signed an informed consent. Five patients received 0.5 mg of micronized E2 vaginally and the other five received 0.5 mg of E_1 . The E_2 solution was prepared by dissolving 1 mg of micronized E2 (Mead Johnson

Received May 2, 1977; revised June 9, 1977; accepted June 9, 1977.

*Supported in part by a grant from the King Trust Founda-

[†]ACOG District I Prize Paper, October 1977.

‡Reprint requests: Isaac Schiff, M.D., 221 Longwood Avenue, Boston, Mass. 02115.

Laboratories, Evansville, Ind.) in 4 ml of normal saline. Aliquots (2 ml) of this solution (0.5 mg) were then applied to the posterior fornix of the vagina. The E₁ solution, delivered in the same way, was made by dissolving 0.5 mg of crystallized E₁ (purity greater than 99%) in 3.5 ml of 12% ethanol in water. The E2 solutions, when subjected to chromatography and analyzed by radioimmunoassay," did not contain any detectable amounts of E_1 (<0.1%). The patients, who arrived at the menopausal unit at 8:00 A.M., were asked to remain recumbent for the 1st hour after the vaginal deposition of the estrogens. Afterward, they were allowed to move about and to eat ad libitum. Blood samples were obtained at 30 minutes and 1 minute prior to the vaginal application of E, or E2 and then hourly thereafter for a total of 6 hours. The blood was centrifuged and the serum was frozen at -20° C until analyzed. Plasma levels of unconjugated E_1 and E_2 were measured by radioimmunoassay following Celite chromatography." Plasma levels of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were measured by radioimmunoassay.9

RESULTS

The effect of the vaginal deposition of 0.5 mg of E_2 on the plasma concentrations of $E_1,\ E_2,\ FSH,$ and LH is shown in Figure 1. The mean (± standard error) basal E2 of 30 ± 5 pg/ml increased 29-fold at 1 hour, reaching levels of 860 ± 247 pg/ml. Plasma E2 concentrations remained in the 800 to 900 pg range for another 2 hours, after which they began to decrease. At 6 hours the mean plasma ${
m E_2}$ concentration of 244 \pm 85 pg/ml was still 8-fold higher than pretreatment levels. The vaginal administration of E2 had only a modest effect on plasma E, levels. Mean plasma E, concentrations increased gradually during the first 3 hours following the administration of E2, to reach maximal levels of 208 ± 39 pg/ml—4 times higher than pretreatment levels (54 \pm 14 pg/ml). At 6 hours they fell to levels of 130 ± 12 pg/ml, which were only 2.4-fold higher than pretreatment values. The effect of the vaginal administration of E2 on plasma LH and FSH was maximal at 3 to 5 hours following E2 treatment. The mean FSH and LH levels at 3 hours postinfusion (101 \pm 10 mIU/ml and 53 \pm 9 mIU/ml) were 13% and 37% lower than preinfusion levels, respectively (P <0.05). At 5 hours post-treatment the FSH level of 92 \pm 9 mIU/ml and the LH level of 53 \pm 12 mIU/ml

Fig. 1. Plasma E_1 , E_2 , LH, and FSH concentrations before and after the vaginal administration of 0.5 mg of micronized E_2 .

were 25% and 37% lower than pretreatment (P < 0.05).

The effect of the vaginal administration of 0.5 mg of E_1 on the plasma concentrations of E_1 , E_2 , LH, and FSH is shown in Figure 2. At 1 hour post-treatment, the mean basal E_1 value of 30 \pm 7 pg/ml increased 24-fold to reach levels of 733 \pm 144

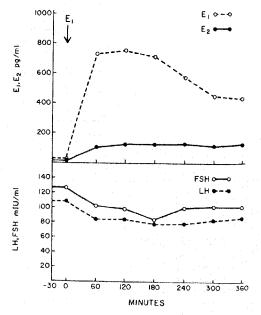


FIG. 2. Plasma E₁, E₂, LH, and FSH concentrations before and after the vaginal administration of 0.5 mg of E₁.

itions be

f micros :

1tment

ion of

of E.L

hourp

 $0 \pm 7 \times$

33 ± 1-

pg/ml. These high E_1 values were maintained for another 2 hours, after which they declined. At 6 hours, the mean plasma E_1 level of 435 \pm 187 pg/ml was still 14-fold higher than pretreatment levels. At 1 hour the mean plasma E_2 level of 105 \pm 24 was 3.7-fold higher than the pretreatment level (28 \pm 8 pg/ml), and in the subsequent 5 hours the mean remained elevated at levels which ranged from 118 to 135 pg/ml. A significant decrease of 30% in plasma FSH and LH concentrations (P < 0.05) was noted at 3 hours following treatment; these levels remained suppressed for the next 3 hours.

None of the patients noted any improvement in their symptoms, nor did anyone complain of breast tenderness, nausea, or vaginal bleeding.

DISCUSSION

This study has demonstrated that estrone and 17β -estradiol are readily absorbed from the vagina, resulting in plasma levels higher than basal for at least 6 hours following their application. Moreover, the plasma E2 levels reached following vaginal administration of 0.5 mg of micronized E2 were 10-fold higher than those achieved following the oral administration of 4 times this dose.3 The 0.5-mg dose of E2 administered vaginally approximates the daily production rate of E2 at the midcycle preovulatory peak.10 The finding that the maximal plasma E2 concentrations observed following vaginal E2 application were approximately twice the peak E2 levels reached at midcycle11 could be explained by the rapid absorption of vaginal E2 during the first few hours after its administration. These results are in agreement with those obtained by Dr. S. S. C. Yen. 12 Although the oral administration of E2 is accompanied by a high rate of conversion of E2 to E, this did not occur after vaginal administration of E2. The relatively small, but significant, elevation of plasma E1 could largely be accounted for by peripheral conversion of E2 into E1.13 The vaginal administration of E2 has an advantage over the oral route in that desired plasma E2 levels may be achieved without an accompanying undesirable increase in E, to nonphysiologic levels. When E, was applied to the vagina, plasma E, rose promptly, reaching levels which were 3.5-fold higher than those observed at midcycle.14 Again, relatively little change in plasma E2 concentration was noted following vaginal E1 administration.

In both groups of women, the estrogens absorbed were biologically active, as indicated by the significant decrease in plasma LH and FSH concentrations. It is of interest that in our study the fall of plasma LH and FSH following the vaginal administration of E, was of the same magnitude as that observed after vaginal administration of E2. The decreases in plasma LH and FSH levels following the vaginal application of E2 were also of the same magnitude as those reported following 3 hours of intravenous infusion of 0.4 mg of E2.10 These data suggest that the vaginal administration of E2 can be used to achieve physiologic blood concentrations of E2. Furthermore, they suggest that vaginal estrogens not be used in patients in whom systemic estrogen therapy is contraindicated.

Acknowledgments. The authors wish to thank the National Pituitary Agency and the National Institute of Arthritis, Metabolism and Digestive Diseases, Bethesda, Md., for the supply of human FSH and LH antisera, and the Medical Research Council, England, for the Second International Reference Preparation of human menopausal gonadotropins. We are also grateful to Carla Dempsey and Sharon Gibbons, R.N., for excellent technical assistance and to Linda Babbitt for typing the manuscript.

REFERENCES

- Ross GT, Vande Wiele RL: The ovaries. In Textbook of Endocrinology, Fifth Edition, Edited by RH Williams. Philadelphia, WB Saunders Co. 1974, p 380
- 2. Ryan KJ, Engel LL: The interconversion of estrone and estradiol by human tissue slices. Endocrinology 52:287, 1953
- Yen SSC, Martin PL, Burnier NM, Czekala NM, Greeney MO Jr, Callantine MR: Circulating estradiol, estrone and gonadotropin levels following the administration of orally active 17β-estradiol in postmenopausal women. J Clin Endocrinol Metab 40:518, 1975
- Jarolim C, Bernard LI, Strauss HA: Estrogenic substitution therapy with estradiol pellet implantation. Am J Obstet Gynecol 94:170, 1966
- 5. Speert H: Local action of sex hormones. Physiol Rev 28: 23, 1948
- Widholm O, Vertiainen E: The absorption of conjugated oestrogen and sodium oestrone sulphate from the vagina. Ann Chir Gynaecol Fenn 63:186, 1974
- Weinstein GD, Frost P, Hsia SL: In vitro interconversion of estrone and 17β-estradiol in human skin and vaginal mucosa. J Invest Dermatol 51:4, 1968
- Tulchinsky D: Placental secretion of unconjugated estrone, estradiol, and estriol into the maternal and fetal circulation. J Clin Endocrinol Metab 36:1079, 1973
- Odell WD, Ross GT, Rayford PL: Radioimmunoassay for luteinizing hormone in human plasma or serum: physiologic studies. J Clin Invest 46:248, 1967

Š.

ing Ng

- 10. Tsai CC, Yen SSC: Acute effects of intravenous infusion of 17β -estradiol on gonadotropin release in pre- and postmenopausal women. J Clin Endocrinol Metab 32:766, 1971
- 11. Abraham GE, Odell WD, Swerdloff RS, Hopper K: Simultaneous radioimmunoassay of plasma FSH, LH, progesterone, 17-hydroxyprogesterone and estradiol-17 β during the menstrual cycle. J Clin Endocrinol Metab 34:312, 1972
- 12. Yen SSC: Personal communication
- 13. Longcope C, Tait JF: Validity of metabolic clearance and interconversion rates of estrone and 17β -estradiol in normal adults. J Clin Endocrinol Metab 32:481, 1971
- Tulchinsky D, Korenman SG: A radioligand assay for plasma estrone: normal values and variations during the menstrual cycle. J Clin Endocrinol Metab 31:76, 1970