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There is a growing awareness that androgens and estrogens
have general metabolic roles that are not directly involved in
reproductive processes. These include actions on vascular
function, lipid and carbohydrate metabolism, as well as bone
mineralization and epiphyseal closure, in both sexes. In post-
menopausal women, as in men, estrogen is no longer solely an
endocrine factor, but instead is produced in a number of ex-
tragonadal sites and acts locally at these sites in a paracrine
and intracrine fashion. These sites include breast, bone, vas-
culature, and brain. Within these sites, aromatase action can
generate high levels of E2 locally without significantly affect-
ing circulating levels. Circulating C19 steroid precursors are
essential substrates for extragonadal estrogen synthesis. The

levels of these androgenic precursors decline markedly with
advancing age in women, possibly from the mid to late repro-
ductive years. This may be a fundamental reason why women
are at increased risk for bone mineral loss and fracture and
possibly decline of cognitive function, compared with men.
Aromatase expression in these various sites is under the con-
trol of tissue-specific promoters regulated by different co-
horts of transcription factors. Thus, in principle, it should be
possible to develop selective aromatase modulators that block
aromatase expression, for example, in breast, but allow un-
impaired estrogen synthesis in other tissues such as bone.
(Endocrinology 142: 4589–4594, 2001)

STUDIES EMPLOYING MODELS of estrogen (E) insuffi-
ciency have revealed new and unexpected roles for E2

in both females and males (1). These models include muta-
tions in humans of the aromatase gene, of which there are
some ten cases documented, three of whom are men (2–4),
and one case of a man with a mutation in the ER� (5). They
also include mice with targeted disruptions of ER� and ER�,
the double ER�- and �-knockout mouse (6–9), and the aro-
matase knockout (ArKO) mouse (10–12). Recently described
consequences of E deprivation revealed by these models
challenge the traditional beliefs of gender specificity of sex
steroid actions. For example, the lipid and carbohydrate phe-
notype of E insufficiency is not sexually dimorphic and ap-
pears to apply to both males and females (13, 14), as does the
bone phenotype of undermineralization and failure of epiph-
yseal closure (2–4, 15). Even more dramatically, the roles of
E2 in male germ cell development in mice (16) and humans
(17), and efferent duct fluid transport in mice (18, 19), would
indicate that in this local context E2 might be more appro-
priately defined as an androgen.

In premenopausal women, the ovaries are the principal
source of E2, which functions as a circulating hormone to act
on distal target tissues. However, in postmenopausal
women, when the ovaries cease to produce estrogens, and in
men, this is no longer the case. Under these circumstances,
E2 is no longer solely an endocrine factor; instead it is pro-
duced in a number of extragonadal sites and acts locally at
these sites as a paracrine or even intracrine factor (1, 20).
These sites include the mesenchymal cells of adipose tissue,
osteoblasts and chondrocytes of bone, the vascular endothe-
lium and aortic smooth muscle cells, and numerous sites in
the brain. Thus, circulating levels of estrogens in postmeno-

pausal women and in men are not the drivers of E action; they
are reactive rather than proactive. This is because circulating
E in this situation originates in extragonadal sites where it
acts locally, and if it escapes local metabolism, then enters the
circulation. Therefore circulating levels reflect, rather than
direct, E action in postmenopausal women and men.

Aromatase and Its Gene

E biosynthesis is catalyzed by a microsomal member of the
cytochrome P450 superfamily, namely aromatase cyto-
chrome P450 (P450arom, the product of the CYP19 gene). The
P450 gene superfamily is a very large one, containing (as of
1996) over 480 members in 74 families, of which cytochrome
P450arom is the sole member of family 19 (21). This heme
protein is responsible for binding of the C19 androgenic ste-
roid substrate and catalyzing the series of reactions leading
to formation of the phenolic A ring characteristic of
estrogens.

The human CYP19 gene was cloned some years ago (22–
24), when it was shown that the coding region spans 9 exons
beginning with exon II. Upstream of exon II are a number of
alternative first exons that are spliced into the 5�-untrans-
lated region of the transcript in a tissue-specific fashion (Fig.
1). For example placental transcripts contain at their 5�-end
a distal exon, I.1. This is because placental expression is
driven by a powerful distal promoter upstream of exon I.1
(25). Examination of the Human Genome Project data reveals
that exon I.1 is 89 kb upstream of exon II (Sebastian, S., and
S. Bulun, personal communication). On the other hand, tran-
scripts in ovaries and testes contain, at their 5�-end, genomic
sequence that is immediately upstream of the translational
start site. This is because expression of the gene in the gonads
utilizes a proximal promoter, promoter II. By contrast, tran-Abbreviation: ArKO, Aromatase knockout.
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scripts in cells of mesenchymal origin such as adipose stro-
mal cells and osteoblasts, contain yet another distal exon (I.4)
located 20 kb downstream of exon I.1 (26). Adipose tissue
transcripts also contain promoter II-specific exonic sequence,
as do those present in endometriotic plaques (27), but pro-
moter II-specific transcripts are undetectable in bone (28).

Splicing of these untranslated exons to form the mature
transcript occurs at a common 3�-splice junction that is up-
stream of the translational start site. This means that al-
though transcripts in different tissues have different 5�-ter-
mini, the coding region and thus the protein expressed in
these various tissue sites is always the same. However, the
promoter regions upstream of each of the several untrans-
lated first exons have different cohorts of response elements,
and so regulation of aromatase expression in each tissue is
different. Thus the gonadal promoter (II) binds the transcrip-
tion factors CREB and SF1, and so aromatase expression in
gonads is regulated by cAMP and gonadotropins (29). In
adipose tissue, as well as in endometriotic plaques, promoter
II-mediated expression is stimulated by PGE2 (27, 30). On the
other hand promoter I.4 is regulated by class I cytokines such
as IL-6, IL-11, and oncostatin M, as well as by TNF� (31).
Thus the regulation of E biosynthesis in each tissue site of
expression is unique (reviewed in Ref. 31), and this leads to
a complex physiological situation which makes, for example,
interpretation of circulating E levels very difficult.

Nonsexually Dimorphic Roles of Androgens
and Estrogens

As indicated above, there is a growing appreciation that
both androgens and estrogens have general metabolic roles
that are not directly involved in reproductive processes and
apply to a greater or lesser extent to both sexes. This is
perhaps more readily understood when placed in the context
of the emerging knowledge of the evolution of steroidogenic
genes on the one hand and those encoding steroid hormone
receptors on the other. Largely from the work of Callard and
her colleagues, it is now recognized that the biosynthesis of
estrogens occurs throughout the entire vertebrate phylum,
including mammals, birds, reptiles, amphibians, teleosts,
and elasmobranch fish as well as agnatha (hagfish and lam-
preys) and in protochordates such as amphioxus (32, 33). To
our knowledge, E biosynthesis has not been reported in
nonchordate animal phyla. Consistent with this, phyloge-
netic analysis of steroid receptors in lower vertebrates indi-
cates that the first steroid receptor was an ER, followed by
a PR (34). No equivalents of the classical steroid receptors
have been found in any species outside the vertebrates, al-
though an ortholog of the estrogen-related receptor (ERR) is
present in Drosophila, namely the ecdysone receptor. Ge-
nome mapping and phylogenetic analysis indicate that the
full complement of mammalian steroid receptors evolved

FIG. 1. Genomic organization of the
human CYP19 gene. BLAST searches of
various promoters and coding region re-
vealed alignment to distinct locations in
two overlapping (an end to end overlap
of 6141-bp) BAC clones of chromosome
15q21.2 region. The distance of each
promoter with respect to the first coding
exon (exon II) was also determined. The
major placental promoter I.1 is the most
distally located (approximately 89 kb).
Even though each tissue expresses a
unique untranslated first exon 5�-UTR,
by splicing into a highly promiscuous
splice acceptor site (AG/AÅCT) of the
exon II the coding region and the trans-
lated protein product is identical in all
tissue sites of expression. Adapted from
unpublished work of Sebastian, S., and
S. Bulun, with permission (33).
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from these ancient receptors by two large-scale genomic ex-
pansions; one before the advent of jawed vertebrates and one
after (34). Specific regulation of physiological processes by
androgens and corticoids are relatively recent innovations
that emerged after these duplications. Thus, we might spec-
ulate that the role of C19 steroids was in the first instance
merely to serve as a precursor for the estrogenic steroids and
that specific physiological roles for C19 steroids only emerged
later. On this basis, it is reasonable to expect that estrogens
should play important physiological roles in males as they do
in females. It is also consistent with the knowledge that at
least in placental mammals the female phenotype is the de-
fault phenotype and that the difference between maleness
and femaleness is not an absolute one, but rather is governed
by a subtle balance of the ratios of estrogenic vs. androgenic
actions.

The Concept of Local Estrogen Biosynthesis

Extragonadal sites of E biosynthesis possess several fun-
damental features that differ from those of the ovaries. The
first important point is that the E synthesized within these
compartments acts predominantly at the local tissue level in
a paracrine or intracrine fashion (35, 36). Thus, the total
amount of E synthesized by these extragonadal sites may be
small, but the local tissue concentrations achieved are prob-
ably high and exert biological influence locally. As a conse-
quence, extragonadal E biosynthesis plays an important but
hitherto largely unrecognized, physiological, and patho-
physiological role.

The power of local E biosynthesis is illustrated by the cases
of boys and men in whom aromatase expression in adipose
tissue, and possibly also in bone, is greatly increased whereas
that present in the testes is unaffected. This results in florid
gynecomastia and short stature due to premature epiphyseal
fusion (37, 38). This condition is a consequence of chromo-
somal rearrangements that result in the insertion of a con-
stitutive promoter upstream of the start of translation of the
aromatase gene (38).

Another example relates to postmenopausal breast cancer.
It has been determined that the concentration of E2 present
in breast tumors of postmenopausal women is at least 20-fold
greater than that present in the plasma (39, 40). With aro-
matase inhibitor therapy, there is a precipitous drop in the
intratumoral concentrations of E2 and estrone, together with
a corresponding loss of intratumoral aromatase activity, in-
dicative that it is this activity within the tumor and the
surrounding breast adipose tissue that is responsible for
these high tissue concentrations (41).

An interesting example is that of endometriotic plaques,
which frequently express high levels of aromatase activity
and promoter II-specific transcripts whose expression is
stimulated by PGE2 (27, 42). In the case reported in (42),
treatment with an aromatase inhibitor led to a dramatic im-
provement in the condition of a postmenopausal woman
with severe endometriosis.

In bone, aromatase is expressed primarily in osteoblasts
and chondrocytes (43), and aromatase activity in cultured
osteoblasts is comparable to that present in adipose stromal
cells (28). Thus, it appears that in bone also, local aromatase

expression is the major source of E2 responsible for the main-
tenance of mineralization, although this is extremely difficult
to prove due to sampling problems. Hence for both breast
tumors and for bone, as well as for endometriotic plaques, it
is likely that circulating E levels have little impact on the
relatively high endogenous tissue E levels. This is probably
true for other extragonadal sites of E formation also, such as
brain. Thus, circulating levels merely reflect the sum of local
formation in its various sites. This is a fundamental concept
for the interpretation of relationships between circulating E
levels in postmenopausal women and E insufficiency in spe-
cific tissues.

The second important point is that E production in these
extragonadal sites is dependent on an external source of C19
androgenic precursors because these extragonadal tissues
are incapable of converting cholesterol to the C19 steroids (35,
36). As a consequence, circulating levels of T and andro-
stenedione as well as DHEA and DHEAS become extremely
important in terms of providing adequate substrate for E
biosynthesis in these sites.

It should be pointed out that in the postmenopausal
woman, circulating T levels are an order of magnitude
greater than circulating E2 levels. This by itself suggests that
circulating androgens might be more important for main-
taining local E levels in extragonadal sites than are circulat-
ing estrogens. Moreover in men, circulating T levels are an
order of magnitude greater than those in postmenopausal
women. In postmenopausal women, the ovaries secrete 25–
35% of the circulating T. The remainder is formed periph-
erally from androstenedione and DHEA produced in the
ovaries, and from androstenedione, DHEA and DHEAS se-
creted by the adrenals. However the secretion of these ste-
roids and their plasma concentrations decrease markedly
with advancing age (20). Moreover, DHEA must first be
converted to androstenedione before aromatization. Another
major step is the reduction of the 17-keto group to 17�-
hydroxyl catalyzed by one or more members of the 17�-HSD
family, which is essential for formation of the active E,
namely E2. The distribution of these enzymes in various
extragonadal sites of aromatization has not yet been fully
established, although reductive and/or oxidative members
are expressed in many tissues.

In this context, it is appropriate to consider why osteopo-
rosis is more common in women than in men and affects
women at a younger age in terms of fracture incidence. We
have suggested that uninterrupted sufficiency of circulating
T in men throughout life supports the local production of E2
by aromatization of T in E-dependent tissues, and thus af-
fords ongoing protection against the so-called E deficiency
diseases. This appears to be important in terms of protecting
the bones of men against mineral loss and may also contrib-
ute to the maintenance of cognitive function and prevention
of Alzheimer’s disease (1).

Selective Aromatase Modulators

In adipose tissue, it has been suggested previously (31)
that aromatase is a marker of the undifferentiated mesen-
chymal cell phenotype. In support of this, the factors that
stimulate aromatase expression in adipose tissue are ones
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that either inhibit or reverse the differentiated phenotype of
adipocytes, namely class I cytokines such as IL-6, oncostatin
M and IL-11, or else TNF� (44–46). All of these agents act via
the mesenchymal promoter I.4 of the aromatase gene, and
require glucocorticoids as co-stimulators (reviewed in Ref.
31). These considerations suggest that factors that stimulate
adipocyte differentiation such as ligands of the PPAR� re-
ceptor, e.g. troglitazone, rosiglitazone, and 15-deoxy-�12,14-
PGJ2 would inhibit aromatase expression in adipose tissue,
and this has proven to be the case (47).

As indicated previously, when a breast tumor is present,
aromatase activity within the tumor and surrounding adi-
pose tissue is such that intratumoral E2 levels are at least an
order of magnitude greater than those in circulating plasma
of postmenopausal women (this may be one reason why
taking hormone replacement therapy carries little increased
risk of breast cancer). This is because the tumor produces
factors that stimulate aromatase expression locally. This
stimulation is associated with switching of the aromatase
gene promoter from I.4 to promoter II, the gonadal-type
promoter (48–51) (Fig. 2). This appears to be because the
tumor-derived factors include PGE2 (46, 52), which stimu-
lates adenylate cyclase in adipose stromal cells, and pro-
moter II is regulated by cAMP. It was found that indeed PGE2
is a powerful stimulator of aromatase expression in these
cells via promoter II (30). Moreover, expression of the CYP19
gene was correlated with COX-1and COX-2 expression in
human breast cancer and normal tissue specimens (53). A
case-control study published some years ago indicated that
daily use of nonsteroidal antiinflammatory drugs such as

ibuprofen reduced the incidence of breast tumors by up to
40% (54). More recently it has been shown that the COX-2
inhibitor, celecoxib, has strong chemopreventive activity
against mammary carcinoma in rats (55). From the consid-
erations presented above, it appears likely that inhibition of
aromatase expression selectively in breast tissue would play
an important role in this chemopreventive action of cyclo-
oxygenase inhibitors.

Third generation aromatase inhibitors are finding utility in
the treatment of E-dependent diseases such as breast cancer
and more recently endometriosis (42). However, these have
the disadvantage that they inhibit aromatase activity in a
global fashion and thus could have a detrimental impact at
sites where E is required for normal function, such as the
maintenance of bone mineralization and possibly the pre-
vention of hepatic steatosis (4) and loss of cognitive function.
The concept of selective aromatase modulators is made pos-
sible by three considerations presented here. Firstly, in post-
menopausal women and in men, E is not a significant cir-
culating hormone but rather acts at a local level at sites where
it is produced, in a paracrine or even intracrine fashion.
Secondly, aromatase expression in these different tissue sites
of expression is regulated by the use of tissue-specific pro-
moters. Thirdly, the various tissue-specific aromatase pro-
moters employ different signaling pathways and thus dif-
ferent cohorts of transcription factors. Thus it is possible to
envision tissue-specific inhibition of aromatase expression in
a similar fashion to the concept of tissue-specific regulation
of E action (the concept of selective ER modulators). Specif-
ically, drugs that target promoter II-driven expression of

FIG. 2. Proposed regulation of aromatase gene expression in breast adipose tissue from cancer-free individuals and from those with breast
cancer. In the former case, expression is stimulated primarily by class I cytokines and TNF� produced locally, in the presence of systemic
glucocorticoids. As a consequence, promoter I.4-specific transcripts of aromatase predominate. In the latter case, aromatase expression is
increased, and PGE2 produced by the tumorous epithelium, tumor derived fibroblasts, and/or macrophages recruited to the tumor site, is a major
factor stimulating aromatase expression, as evidenced by the predominance of promoter II-specific transcripts of aromatase.
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aromatase would be most useful because, in postmenopausal
women, this promoter would appear to be exclusively used
in tumor-containing breast tissue (and in endometriotic
plaques) (27), and thus bone in particular, which does not
express promoter-II specific transcripts (28), would be
spared.
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