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PRECLINICAL STUDY

The androgen metabolite Sa-androstane-3f,17f-diol (3Adiol)
induces breast cancer growth via estrogen receptor: implications

for aromatase inhibitor resistance
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Abstract The aromatase inhibitors (Als) are used to treat
estrogen receptor-positive (ER+) breast tumors in post-
menopausal women, and function by blocking the conver-
sion of adrenal androgens to estrogens by the enzyme
CYPI19 aromatase. Breast cancer patients receiving Al
therapy have circulating estrogen levels below the level of
detection; however, androgen concentrations remain
unchanged. We were interested in studying the effects of
androgens on breast cancer cell proliferation under profound
estrogen-deprived conditions. Using in vitro models of
estrogen-dependent breast cancer cell growth we show that
the androgens testosterone and Sa-dihydrotestosterone
induce the growth of MCF-7, T47D and BT-474 cells in the
absence of estrogen. Furthermore, we demonstrate that
under profound estrogen-deprived conditions these breast
cancer cells up-regulate steroidogenic enzymes that can
metabolize androgens to estrogens. Lastly, we found that the
downstream metabolite of Sa-dihydrotestosterone, So-
androstane-3,17f-diol (3fAdiol), is estrogenic in breast
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cancer cells, and induces growth and ER-signaling via
activation of ERo. In conclusion, our results show that breast
cancer cells deprived of estrogen up-regulate steroidogenic
enzymes and metabolize androgens to estrogen-like ste-
roids. The generation of estrogen-like steroids represents a
potential mechanism of resistance to aromatase inhibitors.
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Abbreviations

ER Estrogen receptor

3fAdiol 5o-androstane-3p,17-diol

Al Aromatase inhibitor

E2 17 f-estradiol

TS Testosterone

DHT So-dihydrotestosterone

Introduction

Estrogens play a significant role in breast cancer develop-
ment and progression and many of the most potent risk
factors for the development of breast cancer can be
explained in terms of increased lifetime exposure to estro-
gen. While the contributions of estrogens to breast cancer
etiology are well established, the role of androgens in breast
cancer development and progression is less well under-
stood. Current dogma holds that androgens can inhibit the
growth of breast cancer cells and that this effect is mediated
through the androgen receptor [1]. However, many of the in
vitro studies of androgen effects on breast cancer have been
conducted in the presence of low concentrations of estrogen
which complicates the interpretation of the results. In the
current study we were interested in evaluating the effects of
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androgens on breast cancer cell growth under conditions of
profound estrogen deprivation. Examining the effects of
androgens under these conditions may be clinically relevant
given the extremely low concentrations of estrogen in post-
menopausal breast cancer patients undergoing therapy with
aromatase inhibitors (Als).

In post-menopausal women, estrogens are generated
through peripheral conversion of adrenal androgens,
including testosterone and androstenedione, to estrogens by
CYP19 aromatase. These peripherally generated estrogens
can stimulate estrogen receptor-positive, estrogen-depen-
dent breast cancer growth in the absence of ovarian
estrogens. The third-generation Als (letrozole, exemestane,
and anastrozole) inhibit the growth of such tumors by
blocking the peripheral conversion of adrenal androgens
to estrogens, suppressing circulating 17f-estradiol (E2)
concentrations to below that detectable by current con-
ventional methods (low pM range) [2, 3]. Although the Als
have proven to be a highly effective therapy for post-
menopausal estrogen receptor-positive (ER+) breast can-
cer, a significant number of patients receiving Als will
relapse within five years of treatment [4]. Thus, a better
understanding of the mechanisms of Al resistance may lead
to improved predictive markers of response and more
effective treatment strategies.

Treatment with Als profoundly suppresses circulating
estrogen concentrations; however, the concentrations of
androgens are not significantly altered [5, 6]. We were
therefore interested in the possibility that androgens and/or
their downstream metabolites might play a role in resis-
tance to Al therapy. A number of studies of the effects of
androgens on breast cancer cells have been published, with
the majority focusing on the effects of testosterone (TS)
and Sa-dihydrotestosterone (DHT) on breast cancer growth
[1, 7-12]. Little is known, however, about the effects of
these compounds on breast cancer cell growth under con-
ditions of profound estrogen deprivation, similar to
conditions found in women treated with Als. Still less is
known about the effects of downstream androgen metab-
olites, some of which have been shown to bind to estrogen
receptors. TS is a relatively weak androgen and is metab-
olized by Sa-reductase to the potent androgen DHT, which
in turn can be further metabolized by 3f-hydroxysteroid
dehydrogenase (3-HSD) to Sc-androstane-3f,17f-diol
(3pAdiol). 35Adiol has been shown to bind both ER« and
ERp, although with approximately 30-fold and 14-fold
lower affinity relative to that of 17pf-estradiol (E2),
respectively [13]. We therefore set out to evaluate the
effects of androgens and their metabolites on the prolifer-
ation of estrogen responsive breast cancer cells grown
under conditions of profound estrogen deprivation, with the
goal of determining if these steroids might be playing a role
in resistance to Al therapy.
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Methods
Cell lines, culture conditions, and growth assays

Testosterone (TS), Sa-dihydrotestosterone (DHT) and 178-
estradiol (E2), were purchased from Sigma-Aldrich Inc.
(St. Louis, MO). 5a-androstane-3 3,17 -diol (3Adiol) was
purchased from Steraloids, Inc. (Newport, RI). Letrozole
(Femara®) was purchased from Toronto Research Chemi-
cal (Toronto, Ontario, Canada). MCF-7, T47D and BT-474
cells were obtained from the Tissue Culture Shared
Resource (TCSR) at the Lombardi Comprehensive Cancer
Center and were routinely cultured in modified IMEM
(Biosource International Inc., Camarillo, CA) supple-
mented with 10% fetal calf serum (Valley Biomedical Inc.,
Winchester, VA), at 37°C in a humidified 5% CO, atmo-
sphere. For assays in defined hormone conditions, cells
were repeatedly washed and grown in steroid depleted
media (phenol red-free IMEM supplemented with 10%
charcoal stripped calf bovine serum—CCS) as previously
described [14]. For growth assays, cells were plated in
steroid-depleted media at 2 x 10° cells/well in 96-well
plates (Falcon, Lincoln Park, NJ) and allowed to attach
overnight before being treating with vehicle control (eth-
anol 0.1%), E2, androgens, and the steroid antagonists.
Relative cell number was determined using the crystal
violet and WST assays as described previously [15].

RNA extraction

Total RNA was isolated using TRIzol® Reagent (Invitro-
gen Corp., Carlsbad, CA) according to the manufacture’s
instructions. Yield and quality were determined by spec-
trophotometry (Beckman DU® 640, Beckman Coulter,
Inc., Fullerton, CA) and using a Bioanalyzer RNA 6000
Nano chip (Agilent Technologies, Palo Alto, CA). All
samples were stored at —80°C.

Western blot

Western blot analysis was performed on whole cell lysates
from breast cancer cell lines. Cell pellets were lysed using
Gold Lysis Buffer [20 mmol/l Tris (pH 7.9), 137 mmol/l
NaCl, 5 mmol/l EDTA, 10% glycerol, 1% Triton X-100,
with protease inhibitor cocktail, Roche, Indianapolis, IN]
and total protein from cell extracts was quantified using the
Bradford assay (Bradford Reagent; Bio-Rad, Hercules,
CA).

Thirty micrograms of protein per lane was resolved on
4-20% gradient polyacrylamide gels (Pierce, Rockford, IL),
and transferred to PVDF membrane. CYP19 aromatase
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protein levels were evaluated by blotting with an anti-CYP19
antibody (ab18995, Abcam, Cambridge, MA), and 33-HSD
levels using an anti-35-HSD antibody (P-18, Santa Cruz,
Santa Cruz, CA). Secondary antibodies were obtained from
Jackson Laboratories (West Grove, PA). f-Actin was used as
a loading control (I-19, Santa Cruz, Santa Cruz, CA).

Real-time PCR

GREB1 mRNA expression was measured using a semi-
quantitative real-time PCR assay as described previously
[14]. Briefly, total RNA (1 pg) was reverse transcribed
using Reverse Transcription System (Promega, Madison,
WI) and the resulting cDNA amplified in a 25 pl reaction
containing Platinum Supermix UDG (Invitrogen Corp.,
Carlsbad, CA), 250 nM of each primer (forward 5'-
CAA AGA ATA ACC TGT TGG CCC TGC-3' and
reverse 5'-GAC ATG CCT GCG CTC TCA TAC TTA-
3’ —Integrated DNA Technologies, Inc., Coralville, IA),
10 nM fluorescein (BioRad Inc., Hercules, CA), and SYBR
Green. Reactions were performed using an iCycler Ther-
mal Cycler (Bio-Rad Laboratories, Inc., Hercules, CA). To
control for RNA quality and quantity, GREB1 expression
was normalized to the levels of the housekeeping genes
36B4 (forward 5'-GTG TTC GAC AAT GGC AGC AT-3'
and reverse 5'-GAC ACC CTC CAG GAA GCG A-3') and
GAPDH (forward 5-GAA GGT GAA GGT CGG AGT
C-3' and reverse 5'-GAA GAT GGT GAT GGG ATT TC-3')
as described previously [14]. To evaluate the quality of
product of real-time PCR assays, melt curve analyses were
performed after each assay. Relative expression was deter-
mined using the AACt method with either GAPDH or 36B4
as the reference genes [16].

Statistical analyses and curve fitting

A two-tailed ¢ test was used to compare treatments to
respective controls (SigmaStat 3.5, Systat Software, Inc.).
Curve fitting and effect concentration for half-maximal
growth (ECso) were determined using GraphPad Prism
4.03 (GraphPad Software, Inc.).

Results

Androgens induce estrogen-dependent breast cancer
cell proliferation in estrogen-deprived conditions

To determine the effects of androgens on breast cancer cell
proliferation in the absence of estrogen, we cultured MCF-7
cells under estrogen-free conditions and treated them with
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Fig. 1 MCEF-7 cells were grown in E2-free conditions as described in
Materials and Methods. The indicated steroids were added to a final
concentration of 10 nM. ICI 182,780 (faslodex) and letrozole were
added to a final concentration of 500 nM. Bars represent 5-day
growth vs. vehicle-treated control £ SD

testosterone (TS) or So-dihydrotestosterone (DHT) at
10 nM, and measured the increase in cell number over five
days of treatment as described in “Materials and Methods”.
Both TS and DHT induced the proliferation of MCF-7 cells
under these conditions by approximately 30% and 56% over
vehicle-treated controls, respectively (Fig. 1). The stimu-
lation of proliferation by both compounds was blocked by
concomitant treatment with 500 nM of the potent anti-
estrogen ICI 182,780 (faslodex, checkered bars), whereas
only the effects of TS were blocked by the aromatase
inhibitor letrozole (500 nM) (striped bars, Fig. 1). The
inability of the Al to block the stimulation by DHT suggests
that this effect does not require aromatase activity. Similar
data were generated using the estrogen dependent breast
cancer cell lines T47D and BT474 (data not shown).

Steroid metabolizing enzymes are up-regulated
under estrogen-deprived conditions

We observed that the androgens TS and DHT can stimulate
the growth of estrogen dependent cells, and that this effect
is apparently mediated through the estrogen receptor, since
it is blocked by an estrogen receptor antagonist. These
findings are surprising in light of the extremely low affinity
of these androgens for ERa [13]. This led us to hypothesize
that in estrogen-deprived culture conditions, the breast
cancer cells are capable of metabolizing androgens into
estrogens. This can be accomplished by CYP19 aromatase
(TS to E2), So-reductase (TS to DHT) and 35-HSD (DHT
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to 3Adiol). To test this hypothesis we used Western blot
analysis to examine the expression of the steroid metabo-
lizing enzymes CYP19 aromatase and 3f-HSD in breast
cancer cells. Cells grown in standard culture conditions
(media supplemented with 10% fetal bovine serum) were
compared to cells grown in estrogen-free conditions (media
with 5% charcoal-stripped serum) for 1-4 days. Figure 2a
shows that CYP19 aromatase and 3-HSD levels were very
low in MCF-7 cells grown under standard culture condi-
tions. However, culture under conditions of profound
estrogen deprivation resulted in a dramatic induction of
CYP19 aromatase and 3-HSD expression levels in a time-
dependent manner. Densitometric analysis of the target/
actin (loading control) ratio shows that levels of both
CYPI19 aromatase and 3f-HSD in MCF-7 cells increase
more than 6-fold versus control (standard conditions) after
4 days in estrogen-free conditions (Fig. 2b). Increases in
CYP19 and 3p-HSD expression were also seen in T47D
cells after incubation in estrogen-free conditions, though to
lower levels, with approximately 2-fold increases in
enzyme expression (data not shown). We observed that Sa-
reductase is not expressed under estrogen-free conditions
both functionally (Fig. 1; TS-induced growth is completely
blocked by aromatase inhibition, suggesting that it is not
metabolized to DHT or 3fAdiol) and by cDNA microarray
analysis (data not shown).

3fAdiol is a weak agonist of ERx growth induction

The potential for 3fAdiol to act as an ERo agonist and
induce the growth of breast cancer cells has been largely
ignored in the literature, despite previous work demon-
strating its binding to ERo [13]. We therefore examined the
ability of the androgen metabolite 3fAdiol to induce the
growth of breast cancer cells under estrogen-free conditions
as described in Materials and Methods. 3 fAdiol induced the
proliferation of MCF-7 cells approximately 82% over
vehicle-treated controls, an effect inhibited by the anti-
estrogen, but not by the aromatase inhibitor (Fig. 3a),
suggesting that this effect does not depend on metabolism
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Days in E2-Free Conditions

by aromatase. Dose-response curves for growth induction
were generated for TS, DHT and 3Adiol, and compared to
growth induction by E2 (Fig. 3b). 3/Adiol appears to be
approximately two logs less potent than E2 with respect to
induction of the growth of MCF-7 cells (ECsy of approxi-
mately 0.2nM and 5.0 pM, respectively). However,
3Adiol is substantially more potent than DHT (ECsy—
0.8 nM) and TS (ECs5¢—2.4 nM). Interestingly, 3fAdiol
appears to act as a weak agonist of ERa for growth induc-
tion, since the maximum stimulation of proliferation
induction by 3fAdiol was roughly 75% of the maximal
induction by E2. Similar results were observed in T47D
cells (Fig. 3c).

3pAdiol growth induction is blocked by anti-estrogens

To confirm that growth stimulation by 3fAdiol is mediated
through activation of ERo, we determined whether its
effects could be blocked by the anti-estrogens tamoxifen,
4-hydroxytamoxifen (4-OHTam), and ICI 182,780 (faslo-
dex). Cells were treated with either E2 or 3Adiol (1 nM)
alone or in combination with increasing concentrations of
the anti-estrogens. As shown in Fig. 4, both E2- and
3pAdiol- induced MCF-7 cell proliferation was inhibited
by the anti-estrogens in a dose-dependent manner (Fig. 4a
and b respectively). ICI 182,780 and 4-OHTam inhibited
the effects of 1 nM E2 roughly equivalently (ICsy of
23 nM and 47 nM, respectively), and tamoxifen only par-
tially inhibited growth at 1 pM (ICs9 > 1 uM), consistent
with 2-fold lesser affinity for ERa versus ICI 182,780 and
4-OHTam. Significantly lower concentrations of the anti-
estrogens were required to inhibit the effects of 1 nM
3pAdiol on cell growth. ICI 182,780 and 4-OHTam were
roughly equipotent (ICsy of 1.0 nM and 2.0 nM, respec-
tively), and tamoxifen inhibited 3 fAdiol-induced growth at
sub-micromolar concentrations (ICso—0.2 uM). The anti-
androgen bicalutamide did not inhibit 3fAdiol-induced
growth at similar concentrations (data not shown). Similar
results were observed in T47D cells (data not shown).



Breast Cancer Res Treat (2009) 115:289-296 293
Fig. 3 Breast cancer cells were A B
grown in E2-free conditions as 350 E
described in Materials and 200 A
Methods. (a) 3fAdiol was i
added to MCF-7 cells to a final = = 300
concentration of 10 nM. ICI o o
182,780 (faslodex) and letrozole = | > 2504
were added to a final § 150 § L
concentration of 500 nM. Bars ° © 5001 <
represent 5-day growth vs. O] S
vehicle-treated control £ SD S X
MCEF-7 (b) or TA7D (c) cells 100 1507
were treated with the indicated
steroid at concentrations from 1001
10 pM-10 nM at half-log . " N '
intervals. Points represent 5-day 3p Adiol 10 10770 10 10
growth vs. vehicle-treated Conc. Hormone (M)
control + SD Il Steroid Only
=8 +ICI 182,780 c = E2 ¢ 3BAdiol A DHT ® TS
+ Letrozole
250

© 200

>

K=

E

6 150

*

3 Adiol induces expression of the ERa-responsive gene
GREB1

To determine whether 3fAdiol activation of ER« induced
ERo-mediated gene transcription, we examined the
expression of GREBI1 in breast cancer cells treated with
3Adiol. We have previously demonstrated that GREBI is
an ERo-specific downstream target critically involved in
the estrogen induced growth of breast cancer cells [14].
Cells were grown in estrogen-free conditions as described
above, and GREBI1 expression was measured 24 h after the
addition of 3fAdiol, alone or in combination with ICI
182,780 as described in “Materials and Methods”. Cells
treated with 1 nM 3Adiol exhibited modest induction of
GREBI expression (~2.5-fold) over vehicle-treated con-
trols (Fig. 5), however, 10 nM and 100 nM 3fAdiol
substantially induced GREB1 expression (17.5- and 56.4-
fold vs. control, respectively). Treatment with 100 nM
3pAdiol resulted in GREB1 expression levels comparable
to those produced by treatment with 1 nM E2, which
caused a 49.0-fold induction in GREB1 expression (dashed
line). Concomitant treatment with the anti-estrogen ICI
182,780 completely blocked the induction of GREBI

100

1010 109
Conc. Hormone (M)

10-" 108

expression by both 3fAdiol and E2 (Inhibition of E2
stimulation not shown).

Discussion

The use of Al as first line endocrine therapy for post-
menopausal, estrogen receptor positive breast cancer has
increased dramatically over the last few years with the
publication of clinical trials suggesting that these com-
pounds may be more effective than the anti-estrogen
tamoxifen [4]. Although the Als are effective, well toler-
ated drugs, a significant percentage of patients experience
disease relapse during Al therapy, suggesting that resis-
tance to this class of compound is a significant problem.
Anecdotal evidence suggests that some women that fail to
respond to Als may still respond to other modes of endo-
crine therapy, even though their serum estrogen
concentrations have been successfully suppressed by Al
therapy. This suggests that at least a proportion of these
resistant tumors in these women are still estrogen depen-
dent, and implies that non-classical estrogens may be
playing a role in resistance to Al therapy.
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Fig. 4 MCEF-7 cells were grown in E2-free conditions as described in
“Materials and Methods”. Growth induction by (a) 1 nM E2 or (b)
1 nM 3fAdiol was antagonized by the anti-estrogens tamoxifen, 4-
hydroxy-tamoxifen (4-OH Tamoxifen), and ICI 182,780 (Faslodex).
Anti-estrogens were added to final concentrations from 10 pM-1 uM
at log intervals. Points represent 5-day growth vs. vehicle-treated
control + SD
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Fig. 5 MCEF-7 cells were grown in E2-free conditions as described in
“Materials and Methods”. Cells were treated with the indicated
concentrations of 3fAdiol in the presence (light bars) or absence
(dark bars) of 1 mM ICI 182,780 for 24 h before harvest. Bars
represent GREB1 expression vs. vehicle-treated control &= SD. The
dashed line represents GREB1 expression induced by 1 nM E2
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Women on Al therapy have circulating concentrations of
estrogen that are below the limit of detection (low pg/ml),
however, the concentrations of androgens remain unchan-
ged (low nM range) [5, 6]. We hypothesized that under
conditions of profound estrogen deprivation, the weak
estrogenic activity of other steroids might be sufficient to
drive the proliferation of estrogen dependent breast cancer,
thereby providing a mechanism for Al resistance. Specifi-
cally, we hypothesized that androgens and their
metabolites, generated independent of aromatase activity,
may contribute to breast cancer growth in the absence of
estrogens.

A considerable amount of work has been done over the
years studying the effects of androgens on the proliferation
of breast cancer cells [1, 7-12]. The literature is, however,
somewhat confusing, with conflicting data coming from
relatively similar experimental systems. For example,
30 years ago we demonstrated that under serum-free con-
ditions, androgens stimulate thymidine incorporation in
breast cancer cell lines apparently through the androgen
receptor [8, 12]. Similarly, the testosterone metabolite
DHT was shown by Birrell et al. to inhibit the growth of
some breast cancer cell lines, but induce the growth of
others [7]. Anti-androgens demonstrated mixed ability to
inhibit the effects of DHT on growth, and this was attrib-
uted to the potential activity of un-indentified DHT
metabolites [7]. Macedo et al. later showed that DHT is
growth-inhibitory in MCF-7 cells under low-estrogen
conditions, and that this effect was mediated by the
androgen receptor [1]. One common thread of much of this
work is that many of the studies use culture systems in
which it is possible that low, but significant, amounts of
residual estrogen remain, and so may not adequately model
the conditions present in a woman on Al therapy. We have
previously made use of a culture system in which residual
estrogen concentrations are extremely low (sub pM) [14,
17], and decided to make use of this system to revisit the
effects of androgens and their metabolites on the prolifer-
ation of estrogen dependent breast cancer cells.

In this study we have demonstrated that profound
estrogen depravation results in the up-regulated expression
of two important steroid metabolizing enzymes, CYP19
aromatase and 3f-HSD. MCF-7 and T47D cells are gen-
erally considered to express very low levels of aromatase
and the finding that estrogen withdrawal can substantially
increase expression levels has important implications. The
induced expression of aromatase may not be important in
the context of Al therapy, since the newly expressed
enzyme should be efficiently inhibited by the drug. How-
ever, the induction of 3f-HSD and potentially other
enzymes raises the possibility of significant local metabo-
lism of androgens and other steroids, and generation of
estrogens, by the breast cancer cells.
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The downstream metabolite of DHT, So-androstane-
3p,17p-diol (3fAdiol), is generated by the action of 3f-
HSD. It has been known for some time that 35Adiol can
bind to both ERo and ER§ with approximately 30-fold and
14-fold lower affinity relative to that of E2, respectively,
suggesting slight specificity for ERf [13]. 3fAdiol has
been extensively characterized as an ERf ligand in in vitro
ERpf-promoter driven luciferase assays [18, 19], gene
expression assays [20, 21], and in vivo prostate and pros-
tate cancer models [22, 23]. 3fAdiol has been shown to
play a well defined role in prostate cancer etiology as an
ERf ligand. Weihua et al. demonstrated that 35Adiol is
anti-proliferative in prostate cancer via activation of ERpf
[22, 23]. The cytochrome P450 CYP7B1 has been shown to
be the primary enzyme responsible for the inactivation and
elimination of 3fAdiol [24, 25]. Activation of ERf by
3Adiol and elimination of 3Adiol by CYP7B1 have been
shown to be critical regulators of prostate cancer growth as
an anti-proliferative pathway [22, 26]. Recently, increased
CYP7B1 levels were correlated with increased prostate
cancer grade, suggesting that increased elimination of
3fAdiol removes tumor growth inhibition by ERpf [26].
Surprisingly, in spite of this work elucidating a role for
3pAdiol in prostate cancer, little is known about the
importance of this steroid in breast cancer. Reporter studies
have suggested that androgen metabolites (largely unde-
fined in these studies) can induce the expression of an
estrogen-responsive luciferase construct, but little further
analysis of the function of these metabolites has been
reported [11, 27]. Interestingly, female knockout mice
generated by Omoto et al that lack expression of CYP7B1
(the enzyme responsible for the elimination of 3fAdiol)
showed increased proliferation of both mammary and other
reproductive tissues, as well as early onset of puberty and
early ovarian failure, suggesting that 3fAdiol is indeed
estrogenic in the breast and reproductive tissues [28].

In this study, we report for the first time that 3fAdiol
can induce the proliferation of breast cancer cells through
direct activation of ERa. This growth-stimulation is
antagonized by the anti-estrogens 4-hydroxytamoxifen and
ICI 182,780. In addition to inducing growth, 3Adiol also
induces the expression of the ERa-specific downstream
gene GREB1 which we have previously shown is a critical
mediator of estrogen stimulated proliferation. These find-
ings raise the possibility that in the absence of conventional
estrogens, 3fAdiol may be an important mediator of
estrogen dependent breast cancer growth. We hypothesize
that the generation of 3fAdiol from testosterone via aro-
matase-independent pathways represents a potential
mechanism for resistance to Als. The enzymes required for
generation of 3fAdiol, Sa-reductase and 3-HSD, are both
expressed in a wide variety of tissues, primarily the adrenal
glands and liver [29]. In addition, we have demonstrated

that 35-HSD is expressed in estrogen-deprived breast
cancer cells. Thus, in the context of Al therapy, while
circulating testosterone cannot be converted to 17f-estra-
diol due to inhibition of aromatase activity, it may readily
be converted to 3fAdiol both systemically and, potentially,
locally in the mammary tumor. In one study, plasma con-
centrations of 3fAdiol in humans were reported to be
approximately 1.5 nM [30]. These relatively low concen-
trations of circulating 3fAdiol may be sufficient to drive
tumor growth in the absence of estrogen, particularly in
women undergoing treatment with Als. In addition, prior
reports have demonstrated that breast cancer cells can
become hypersensitive to extremely low concentrations of
estrogens after long-term estrogen deprivation [31, 32].
These data suggest that tumors may be sensitive to very
low concentrations of a weak ERo agonist such as 3Adiol.
Further, the reported 3fAdiol plasma concentrations are
greater than the calculated ECs, values for growth induc-
tion of breast cancer cells in culture (as shown in Fig. 3).

In summary, these data demonstrate the important con-
cept that the metabolism of testosterone by aromatase does
not represent the only mechanism by which estrogen-like
steroids may be generated in post-menopausal women.
While inhibition of aromatase may be sufficient to block
the productions of the more well know estrogens in the
majority of patients treated with Als, conditions causing an
increase in activity of the enzymes responsible for 3Adiol
production, particularly locally within the tumor, may lead
to production of estrogen-like steroids independent of
aromatase. These pathways may represent an important
mechanism for resistance to Al therapy and a more thor-
ough understanding of the diversity of hormone
metabolism may be extremely valuable in the refinement of
optimal endocrine therapy for breast cancer.
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