

Request # 21202684

Mail To:

Fordham Health Sciences Library (OhioLINK#547)

Interlibrary Loan

3640 Colonel Glenn Highway

Dayton, OH 45435-0001

DOCLINE: Journal Copy EFTS Participant

Title:

International journal of impotence research

Title Abbrev:

Int J Impot Res

Citation:

2006 Mar-Apr; 18(2):115-20

Article:

Male hypogonadism. Part I: Epidemiology of hypogon

Author:

Seftel A

NLM Unique ID:

9007383 Verify: PubMed

PubMed UI:

16193071

ISSN:

0955-9930 (Print) 1476-5489 (Electronic)

Publisher:

Nature Publishing Group, Basingstoke:

Copyright:

Copyright Compliance Guidelines

Authorization:

barb

Need By:

N/A

Maximum Cost:

\$15.00

Patron Name:

Glaser, Rebecca - TN: 100767

Referral Reason:

Lacking

Phone:

1.937.775-4110

Fax:

1.937.775-2232

Email:

fill@www.libraries.wright.edu

Ariel:

130.108.121.58

Alternate Delivery:

Routing Reason:

Ariel, Email (PDF)

Comments:

GMR-RL PLEASE ARIEL, ODYSSEY OR EMAIL IF POSSIBLE.

, ,

Routed to MNUMAY in Serial Routing - cell 3

Received:

Nov 07, 2006 (08:35 AM EST)

Lender:

Mayo Clinic College of Medicine/ Rochester/ MN USA (MNUMAY) This material may be protected by copyright law (TITLE 17,U.S. CODE)

Bill to: OHUDAC

Fordham Health Sciences Library (OhioLINK#547)

Interlibrary Loan

3640 Colonel Glenn Highway

Dayton, OH 45435-0001

NOV 06, 2006

REVIEW Male hypogonadism. Part I: Epidemiology of hypogonadism

AD Seftel

Department of Urology, Case Western Reserve University, University Hospitals of Cleveland, Cleveland, OH, USA

Male hypogonadism is a frequent and potentially undertreated condition. A number of longitudinal epidemiologic studies, including the Baltimore Longitudinal Study of Aging, the New Mexico Aging Process Study, and the Massachusetts Male Aging Study, have demonstrated age-related increases in the likelihood of developing hypogonadism. In addition to advancing age, increasing body mass index and/or type II diabetes mellitus may be associated with lower circulating androgen levels. Owing to the demographic trends toward increasing population age and life expectancy, together with the emerging pandemic of diabetes and recent trend toward an increasing prevalence of obesity in the United States, clinicians are likely to encounter increasing cases of hypogonadism in the near future.

International Journal of Impotence Research (2006) 18, 115–120. doi:10.1038/sj.ijir.3901397; published online 29 September 2005

Keywords: hypogonadism; aging; type II diabetes mellitus; obesity; testosterone

Introduction

Hypogonadism affects up to 4 million American men, yet only 5% of candidates receive treatment. Evidence suggests that low testosterone (T) and the attendant symptoms and signs of hypogonadism can be effectively treated using testosterone replacement therapy (TRT). This article will review the epidemiology of male hypogonadism. Subsequent articles will review (1) the etiology, pathophysiology, and diagnosis of male hypogonadism; and (2) the pharmacokinetics, efficacy, tolerability, and safety profiles of different forms of TRT, as well as required screening and monitoring tests prior to and during TRT.

Epidemiology

Demographic trends and potential risk factors Aging

Trend. The advancing median age, increased life expectancy, and rising prevalences of obesity and

type II diabetes mellitus (DM2) in western industrialized societies may result in increasing numbers of male hypogonadism cases in the near future. According to US Census Bureau projections, the number of Americans ages 65 or older will rise from approximately 35 million (12.4% of all Americans) in 2000 to nearly 55 million (16.3% of total) by 2020 and nearly 87 million (20.7%) in 2050. In addition to a two-fold increase in the number of elderly patients, octogenarians will comprise the fastest-growing population segment according to age. ³

Effects of aging on circulating testosterone. In healthy, young eugonadal men, serum T levels range from 300 to 1050 ng/dl, but decline with advancing age, particularly after 50 years (Figure 1). ⁴⁻⁶ Using a serum T level <325 ng/dl, the Baltimore Longitudinal Study of Aging (BLSA) reported that approximately 12, 20, 30, and 50% of men in their 50s, 60s, 70s, and 80s, respectively, are hypogonadal.

Longitudinal and cross-sectional studies have demonstrated annual T decrements of 0.5–2% with advancing age.^{5–9} The rate of decline in serum T in men appears to be largely dependent on their ages at study entry. In the BLSA, the average decline was 3.2 ng/dl per year among men age 53 years at entry.⁵ On the other hand, the New Mexico Aging Process Study of men 66–80 years at entry showed a decrease in serum T of 110 ng/dl every 10 years.⁶ Although serum T levels are generally measured in

Correspondence: Dr A Seftel, Department of Urology, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44106-5046, USA.

E-mail: adseftel@aol.com

Received 2 March 2005; revised 19 August 2005; accepted 19 August 2005; published online 29 September 2005

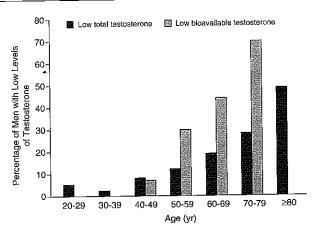


Figure 1 Percent of men with low levels of testosterone and bioavailable testosterone as a function of age. Reproduced with permission from Rhoden *et al.*⁴ ©Copyright 2004 Massachusetts Medical Society. All rights reserved.

the morning when at peak, this circadian rhythm is often abolished in elderly men.¹⁰

In healthy men, only 1-3% of biologically active steroids circulate free, with the balance being bound tightly to sex hormone binding globulin (SHBG) or loosely to albumin. The free T (FT) and the fraction bound loosely to albumin are readily available for entry into tissues. Unlike serum T, concentrations of SHBG, as well as luteinizing hormone (LH) and follicle-stimulating hormone (FSH), rise significantly with age^{5,6} such that the SHBG level of a man in his 80s is about twice as high as in his 20year-old male counterpart. In the Massachusetts Male Aging Study, SHBG increased by 1.2% annually. Owing to the differences in binding affinities of male and female hormones for SHBG, increases in circulating levels of this glycoprotein tend to generate a more estrogenic, rather than androgenic, milieu.11

Unlike the sharp, universal decreases in hormone levels observed in women with menopause, declines in circulating androgens in men with advancing age are gradual and variable. For this reason and others, the term andropause is misleading and should be avoided when discussing age-associated male hypogonadism; ¹² the term partial androgen deficiency of the aging male (PADAM) is generally preferred. Waning T levels represent one facet of a larger endocrine decline in many elderly men, with frequent reductions in secretion of thyroid hormone, growth hormone, and/or insulin-like growth factor.

Advancing age independently lowers T levels even after controlling for chronic conditions associated with aging. Conditions associated with reduced T and/or higher SHBG levels include obesity; diabetes mellitus (DM);¹³ use of certain medications; hyperthyroidism, which elevates hepatic

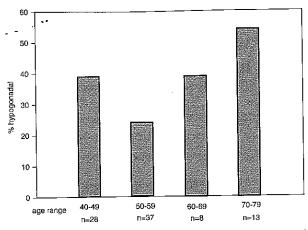


Figure 2 Percentage of hypogonadal (low free T or calculated free T index) patients with type II diabetes mellitus in age groups ranging from 40 to 79 years. Reproduced with permission from Dhindsa $et~al.^{13}$

SHBG output; as well as alcoholism (daily intake $>40\,\mathrm{g}^{14}$) and/or alcoholic liver disease. ¹¹

Diabetes mellitus

Trend. Approximately 5% of persons ages 20–79 years have DM, according to data from the International Diabetes Federation. This includes 48 million Europeans and 43 million residents of the Western Pacific. Diabetes rates are highest in the United States (7.9%) and Europe (7.8%). With population aging, as well as unhealthful diets, sedentary lifestyles, and/or attendant obesity, the number of people with DM has increased from 30 million in 1985 to more than 150 million in 2000. The number is projected to escalate to nearly 333 million by the year 2025.

Effects of DM on circulating testosterone. In a recent study, hypogonadism (low FT) was observed overall in 33% of men with DM2, who had a mean body mass index (BMI) of 33.4 kg/m² and a hemoglobin A1c of 8.4%. ¹³ Figure 2 shows the distribution of hypogonadism (defined as low FT or calculated FT (cFT)) across different age groups in men with DM2. ¹³ A total of 58% of massively obese individuals with DM2 (BMI > 40 kg/m²) had hypogonadism as defined by low FT. ¹³ According to the authors, FT should be measured before designating any DM2 patient as hypogonadal. Using only a low T (<300 ng/dl) to define hypogonadism resulted in 36% false positives and 12% false negatives compared with low FT or cFT. ¹³

Obesity

Trend. In the United States, visits to physicians for obesity-related maladies rose 90% from 1988 through 1994. In addition, about one in four

American adults has metabolic syndrome, a condition indicative of insulin resistance that includes overweight, central (upper-body) adiposity, hypertension, low levels of high-density lipoprotein cholesterol, and high levels of small dense lowdensity lipoprotein cholesterol, which is considered to be highly atherogenic. According to the third National Health and Nutrition Examination Survey,¹⁷ 47 million Americans have metabolic syndrome, including approximately 44% of those ages 60 years or more. 18

Potential effects of obesity on circulating testosterone. In the aforementioned study on hypogonadism in men with DM2, values for T, FT, and cFT were all significantly lower in hypogonadal compared with eugonadal men, while SHBG was not significantly different between the two groups. Testosterone (r=-0.327; P<0.01) and (r=-0.382; P<0.01) were inversely correlated with BMI: The study demonstrated that BMI was an independent predictor of hypogonadism. 13

On the other hand, 31.3% of lean men (normal BMI) with DM2 were also hypogonadal, suggesting that factors other than adiposity may play a role in the hypogonadism associated with insulin-resistant states. 13 A recent study involving men without DM showed that age-adjusted bioavailable T (BT), FT, and T correlated inversely with fasting insulin $(P \leq 0.03 \text{ for each})$, and both SHBG and T correlated inversely with fasting glucose ($P \leq 0.003$ for each).¹⁹

Epidemiologic relationships between obesity and hypogonadism are complex. In a large-scale longitudinal study, T decreased by 10 ng/dl per 1 kg/m² increment in BMI.5 Other studies have also shown reduced T and FT in men with increasing total or abdominal adiposity. 20,21 The direction of causality between abdominal adiposity and low T levels is not clear.8

In one cross-sectional study of 400 communitydwelling men ages 40-80 years, increases in both BMI and central adiposity (waist circumference) were associated with low levels of T, BT, and dehydroepiandrosterone sulfate, whereas both current smoking and greater physical activity were associated with higher T concentrations. 14

Some grossly obese patients have reduced total T and SHBG levels, as well as diminished T-SHBG binding, such that FT levels remain normal. 11,22 Obesity may lower circulating androgens or reduce T-SHBG binding via (1) excessive metabolic clearance of androgens in adipose tissues; 11 (2) aromatization of androgens in adiposé tissues; or (3) increased formation of inflammatory cytokines (eg tumor necrosis factor- α , interleukin- 1β), which may also blunt secretion of LH and gonadotropin-releasing hormone (GnRH). 23,24 Conversely, T has potential anti-inflammatory (and antiatherogenic) properties in animal models and humans.²⁵

Controversies in diagnosis

Diagnostic issues in hypogonadism will be covered at greater length in part II of this three-part review. The diagnosis of male hypogonadism, particularly PADAM, is fraught with controversy. Frequently debated topics include threshold hormone levels for determining PADAM; whether low T levels in the presence of normal LH levels warrant further workup to detect underlying hypothalamic-pituitary axis disorders; the optimal manner in which to measure these hormone levels, particularly total testosterone (TT); and the ideal hormone fraction to identify patients with hypogonadism: TT, bioavailable testosterone (BT), or free testosterone (FT).

According to the preponderance of literature from the past 30 years based on traditional radioimmunoassay (RIA) methods with or without chromatography, the reference range for TT is 300-1000 ng/ dl. 26,27 Another way to determine the threshold for 'low TT' is statistical, that is, 2.5 standard deviations (s.d.'s) below the mean for healthy young men. In a recent study on the clinical utility of GnRH testing in the differential diagnosis of PADAM and secondary hypogonadism, a Swiss group used a threshold TT of <337 ng/dl, which was 2.5 s.d.'s lower than the mean for a group of 13 young healthy controls (mean age = 33.9 years): approximately 625 ng/dl.²⁸

One argument for using 300 ng/dl as the threshold for diagnosing male hypogonadism is that there is a functional correlation with erectile dysfunction (ED). Studying 162 elderly (mean age = 64.1 years) men with ED (mean duration = 45.6 months), a Korean group reported that hypogonadism (serum TT <300 ng/dl) was among the strongest independent predictors of a poor response to sildenafil 25-100 mg for 8 weeks. Only poor pretreatment erectile function (International Index of Erectile Function (IIEF) erectile function domain score <17) was a stronger independent prognostic factor (OR = 2.2; 95% CI = 1.45–7.33).

Another consideration in the diagnosis of male hypogonadism is that measurements of TT may vary during different times of the day or year and from laboratory to laboratory. In a recent study, coefficients of variation between laboratories using the same methods/instruments ranged from 5.1 to 22.7%.²⁶ The median value of the quality control sample across all laboratories was 297 ng/dl, with results as low as 160 ng/dl (hypogonadal) and as high as 508 ng/dl (eugonadal). Certain manufacturers of automated assay platforms also provide normal male reference ranges that are much lower than the reference TT range of 300-1000 ng/ dl cited above, with lower limits ranging from 170 to 200 ng/dl and upper limits ranging from 700 to

Total T levels show marked circadian and circannual variation. Owing to the circadian variation,

lated roups from

ıtake

79 rna-48 the the

Nith iets, the a 30 000. 333

In a rved ıean moibuor s in bese

the ting low lted ives

ypo-

ians 988 four

the Second International Consultation on Erectile Dysfunction of the World Health Organization (WHO)³⁰ recommended that a blood sample for serum T determination should be obtained between 0800 and 1100, when T levels typically peak in healthy young men. This circadian rhythmicity may be abolished or blunted in men with advancing

age¹⁰ or during certain forms of TRT.

The method of choice for determining serum TT levels is liquid chromatography-tandem mass spectrometry (LC-MS-MS). However, this methodology is not available to many hospitals and office practices. A recent study determined that commercially available automated and manual methods are capable of discriminating eugonadal from hypogonadal TT values in the presence of adult male reference ranges established by each laboratory.26 More than 60% of serum samples from men with TT within the adult male range were within ±20% of values determined by LC-MS-MS. Certain methods (eg DPC Immulite) were biased toward lower values, while others were biased toward higher values (eg Bayer ADVIA Centaur) across a wide range of serum TT concentrations.

The chief problem with the commercially available immunoassays was in determining very low serum TT (<100 ng/dl): in specimens with such low TT values typical of prepubertal males (and females), 56-90% of values generated by commercially available assays fell outside the $\pm 20\%$ window around LC-MS-MS values.26 As mentioned above, values obtained with the DPC Immulite were systematically lower and those obtained by the Bayer ADVIA Centaur systematically higher than the values provided by LC-MS-MS. Other assays (DPC-RIA and Roche Elecys) exhibited large percent differences in both directions. None of these assays is considered reliable enough to investigate serum TT levels in children and women. 26,31

A morning T level ≤300 ng/dl should be confirmed by a repeated measurement at the same time of day. However, neither a low TT nor clinical symptoms are sufficient to discriminate PADAM from secondary, hypogonadotropic hypogonadism attributed to hypothalamic-pituitary axis disorders. In a recent study,²⁸ lack of libido was present in approximately 54% of men with PADAM and 67% of those with secondary hypogonadism; ED in 58 and 53%, respectively; fatigue in 38 and 58%; depressive mood in 25 and 21%; and osteopenia or osteoporosis in 17 and 29%.

According to guidelines from the American Association of Clinical Endocrinologists (AACE), exceedingly low T levels (≤150 ng/dl) warrant pituitary imaging even in the absence of other signs or symptoms. 32 Others use a threshold of < 200 ng/dl to trigger magnetic resonance imaging (MRI). 33,34 Some authorities recommend sellar MRI with thyroxine, cortisol, and prolactin assessments when secondary hypogonadism is considered likely.³³

Based on extensive hormonal evaluation of elderly men with normal and low levels of T, as compared with those with primary and secondary hypogonadism and young, healthy volunteers, a Swiss group²⁸ recently developed an algorithm for the use of GnRH testing to discriminate secondary, hypogonadotropic hypogonadism from PADAM. First, if repeated serum TT levels are below <337 ng/dl in an elderly man, a GnRH stimulation test should be conducted. A peak LH following GnRH stimulation of >15 mU/l precludes costly imaging studies to rule out secondary (hypogonadotropic) hypogonadism. On the other hand, elderly men who have TT levels below <337 ng/dl in the presence of a blunted LH response to GnRH (<15 IU/l) should undergo MRI to rule out pituitary disease.²⁸ The most recent WHO guidelines recommend a confirmatory TT if a morning level is below the lower limit of 'the accepted normal values' as well as assessment of LH, FSH, and prolactin.30

Compared with men having PADAM, those with secondary hypogonadism were significantly vounger (52.5 vs 62.3 years; P < 0.05) and had significantly lower levels of basal TT (167 vs 271 ng/dl), as well as significantly lower levels of basal LH and FSH and LH and FSH responses to

GnRH administration.²⁸

Finally, there is ongoing debate as to which androgenic fraction is the most reliable indicator of hypogonadism. Approximately 50-70% of circulating T is bound tightly to SHBG and is hence physiologically inactive. A further 20–30% is bound loosely to albumin and 1-3% circulates free in the serum. Only these latter two fractions are available to tissues and are thus termed BT. Free testosterone can be calculated 35,36 or measured by equilibrium dialysis. One measure of FT is the free androgen index $(FAI = TT/SHBG \times 100)$.³⁷ Bioavailable T is measured using an ammonium sulphate precipitation method and may also be computed.

According to the most recent WHO guidelines,³⁰ TT assays may not indicate true androgenic status, particularly in elderly men. The WHO guidelines state that BT and cFT are the most reliable and accessible assays to establish male hypogonadism. Because, for example, serum TT may be normal in patients with primary testicular disorders (eg, Klinefelter syndrome) or increased SHBG, obtaining FT or BT may also be useful. 32 However, the validity and accessibility of a number of diagnostic tests (eg, equilibrium dialysis) and other, dynamic assess-

ments are matters of ongoing debate.

A recent cross-sectional study of a cohort of 1072 men undergoing elective coronary angiography demonstrated that measures of TT were superior to computed FT or BT in the determination of hypogonadism. When TT levels were borderline, in the range of 216-346 ng/dl, estimates of FT proved superior to TT alone. 38

n of T, as ıdary rs, a n for

dary, AMelow ation wing ostly.

ıand, ng/dl e to out uidening pted

ogo-

hose antly had VS ls of es to

FSH,

 $_{
m hich}$ or of ulatence ound ı the lable

rone rium ogen T is pita-

es,³⁰ atus, lines and lism. al in (eg,

ning idity tests sess-

1072 aphy erior n of

line, FT Conclusion

Owing to demographic trends toward greater longevity, as well as increasing prevalences of obesity, metabolic syndrome, and DM, clinicians in western industrialized societies may be confronted with a burgeoning hypogonadism case burden in upcoming years. These trends merit enhanced vigilance for the problem in daily practice.

Acknowledgments

Einancial disclosure: Series supported under an educational grant from Auxilium Pharmaceuticals. Dr Seftel has consulting relationships with Auxlium Pharmaceuticals, Bayer, Columbia Laboratories, Lilly ICOS LLC, Pfizer Inc., QLT Inc., and Sanofi-Synthelabo Inc., but no direct financial interest (eg stock ownership) in these companies.

References

- 1 Food and Drug Administration. Skin patch replaces testosterone. In: Updates. Rockville, MD, Available at http://www.fda. gov/fdac/departs/196_upd.htm. Accessed September 27, 2004.
- 2 US Census Bureau. US interim projections by age, sex, race, and Hispanic origin. 2004. Available at: http://www.census. gov/ipc/www/usinterimproj/. Accessed January 25, 2005.
- 3 Batchelor WB, Jollis JG, Friesinger GC. The challenge of health care delivery to the elderly patient with cardiovascular disease: demographic, epidemiologic, fiscal, and health policy implications. Cardiol Clin 1999; 17: 1-15.
- 4 Rhoden EL, Morgentaler A. Risks of testosterone-replacement therapy and recommendations for monitoring. N Engl J Med 2004; **350**: 482-492.
- 5 Harman SM, Metter EJ, Tobin JD, Pearson J, Blackman MR. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore Longitudinal Study of Aging. J Clin Endocrinol Metab 2001; 86: 724-731.
- 6 Morley JE, Kaiser FE, Perry III HM, Patrick P, Morley PM, Stauber PM et al. Longitudinal changes in testosterone, luteinizing hormone, and follicle-stimulating hormone in healthy older men. Metabolism 1997; 46: 410-413.
- 7 Snyder PJ. Effects of age on testicular function and consequences of testosterone treatment. J Clin Endocrinol Metab 2001; 86: 2369-2372.
- 8 Vermeulen A. Androgen replacement therapy in the aging male: a critical evaluation. J Clin Endocrinol Metab 2001; 86: 2380-2390
- 9 Feldman HA, Goldstein I, Hatzichristou DG, Krane RJ, McKinlay JB. Impotence and its medical and psychosocial correlates: results of the Massachusetts Male Aging Study. J Urol 1994; 151: 54-61.
- 10 Bremner WJ, Vitiello MV, Prinz PN. Loss of circadian rhythmicity in blood testosterone levels with aging in normal men. J Clin Endocrinol Metab 1983; 56: 1278-1281.
- 11 Selby C. Sex hormone binding globulin: origin, function and clinical significance. Ann Clin Biochem 1990; 27(part 6):
- 12 Conway AJ, Handelsman DJ, Lording DW, Stuckey B, Zajac JD. Use, misuse and abuse of androgens: The Endocrine Society of Australia consensus guidelines for androgen prescribing. Med J Aust 2000; 172: 220-224.
- 13 Dhindsa S, Prabhakar S, Sethi M, Bandyopadhyay A, Chaudhuri A, Dandona P. Frequent occurrence of hypogona-

- dotropic hypogonadism in type 2 diabetes. J Clin Endocrinol Metab 2004; 89: 5462-5468.
- 14 Muller M, den Tonkelaar I, Thijssen JH, Grobbee DE, van der Schouw YT. Endogenous sex hormones in men aged 40-80 years. Eur J Endocrinol 2003; 149: 583–589.
- 15 International Diabetes Federation. Diabetes prevalence. Available at http://www.idf.org/home/index.cfm?node = 264. Accessed January 28, 2005.
- 16 Wolf AM, Colditz GA. Current estimates of the economic cost of obesity in the United States. Obes Res 1998; 6: 97-106.
- 17 Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA 2002; 287:
- 18 Alexander CM, Landsman PB, Teutsch SM, Haffner SM. NCEP-defined metabolic syndrome, diabetes, and prevalence of coronary heart disease among NHANES III participants age 50 years and older. Diabetes 2003; 52: 1210-1214.
- 19 Tsai EC, Matsumoto AM, Fujimoto WY, Boyko EJ. Association of bioavailable, free, and total testosterone with insulin resistance; influence of sex hormone-binding globulin and body fat. Diabetes Care 2004; 27: 861-868.
- 20 Haffner SM, Valdez RA, Stern MP, Katz MS. Obesity, body fat distribution and sex hormones in men. Int J Obes Relat Metab Disord 1993; 17: 643–649.
- 21 Zumoff B, Strain GW, Miller LK, Rosner W, Senie R, Seres DS et al. Plasma free and non-sex-hormone-binding-globulin-bound testosterone are decreased in obese men in proportion to their degree of obesity. J Clin Endocrinol Metab 1990; 71: 929–931.
- 22 Amatruda JM, Harman SM, Pourmotabbed G, Lockwood DH. Depressed plasma testosterone and fractional binding of testosterone in obese males. I Clin Endocrinol Metab 1978; **47**: 268-271
- 23 Watanobe H, Hayakawa Y. Hypothalamic interleukin-1 beta and tumor necrosis factor-α, but not interleukin-6, mediate the endotoxin-induced suppression of the reproductive axis in rats. Endocrinology 2003; 144: 4868-4875.
- 24 Russell SH, Small CJ, Stanley SA, Franks S, Ghatei MA, Bloom SR. The in vitro role of tumour necrosis factor-α and interleukin-6 in the hypothalamic-pituitary gonadal axis. J Neuroendocrinol 2001; **13**: 296–301.
- 25 Malkin CJ, Pugh PJ, Jones RD, Jones TH, Channer KS. Testosterone as a protective factor against atherosclerosis: immunomodulation and influence upon plaque development and stability. J Endocrinol 2003; 178: 373-380.
- Wang CA, Catlin DH, Demers LM, Starcevic B, Swerdloff RS. Measurement of total serum testosterone in adult men: comparison of current laboratory methods versus liquid chromatography-tandem mass spectrometry. J Clin Endocrinol Metab 2004; 89: 534-543.
- 27 Larsen PR, Kronenberg HM, Mełmed S, Polonsky K. Reference values. In: William's Textbook of Endocrinology 10th edn. WB Saunders: Philadelphia, PA, 2002.
- 28 Christ-Crain M, Meier C, Huber PR, Zimmerli L, Mueller B. Value of gonadotropin-releasing hormone testing in the differential diagnosis of androgen deficiency in elderly men. J Clin Endocrinol Metab 2005; 90: 1280–1286.
- 29 Park K, Ku JH, Kim SW, Paick J-S. Risk factors in predicting a poor response to sildenafil citrate in elderly men with erectile dysfunction. BJU Int 2005; 95: 366-370.
- 30 Lue TF, Giuliano F, Montorsi F, Rosen RC, Andersson K-E, Althof S et al. Summary of the recommendations on sexual dysfunctions in men. J $Sex\ Med\ 2004;\ 1:\ 6-23.$
- 31 Taieb J, Mathian B, Millot F, Patricot M-C, Mathieu E, Queyrel N et al. Testosterone measured by 10 immunoassays and by isotopedilution gas chromatography-mass spectrometry in sera from 116 men, women, and children. Clin Chem 2003; 49: 1381-1395.
- 32 American Association of Clinical Endocrinologists medical guidelines for clinical practice for the evaluation and treatment of hypogonadism in adult male patients: 2002 update. Endocr Pract 2002; 8: 440-456.
- 33 Snyder PJ. Hypogonadism in elderly men: what to do until the evidence comes. N Engl J Med 2004; 350: 440-442.

- 120
- 34 Vaninetti S, Baccarelli A, Romoli R, Fanelli M, Faglia G, Spada A. Effect of aging on serum gonadotropin levels in healthy subjects and patients with nonfunctioning pituitary adenomas. Eur J Endocrinol 2000; 142: 144–149.
- 35 Nanjee MN, Wheeler MJ. Plasma free testosterone: is an index sufficient? Ann Clin Biochem 1985; 22: 387–390.
- 36 Vermeulen A. Testosterone in plasma: a physiopathological study. Verhandelingen – Koninklijke Academie voor Geneeskunde van Belgie 1973; 35: 95–180.
- 37 Wilke TJ, Utley DJ. Total testosterone, free-androgen index, calculated free testosterone, and free testosterone by analog RIA compared in hirsute women and in otherwise-normal women with altered binding of sex-hormone-binding globulin. Clin Chem 1987; 33: 1372–1375.
- 38 Morris PD, Malkin CJ, Channer KS, Jones TH. A mathematical comparison of techniques to predict biologically available testosterone in a cohort of 1072 men. *Eur J Endocrinol* 2003; 151: 241–249.