Academy Conferences BREAKTHROUGH RESEARCH

Search Go

Advanced Search

Feedback

NYAS Home NYAS Home Events Events Programs eBriefings Programs eBriefings Science & the City Science & the City Annals Publications

Annals Publications

tions Membership tions Membership About About

${f ANNALS}$ of the New York Academy of Sciences

NYASLogin

Main

Browse Volumes

Forthcoming Volumes

Annals PrePrints

Annals Extra

E-mail Alerts

Subscriptions & Orders

New Proposals

Author Guidelines

Not a member

Join now for **full** *Annal*s access and

of the Academy?

get a **free** volume.

About Annals

Help

Estrogens and Human Diseases Volume 1089 published November 2006 Ann. N.Y. Acad. Sci. 1089: 302–323 (2006). doi: 10.1196/annals.1386.035 Copyright © 2006 by the New York Academy of Sciences description | purchase this volume

Part VI. Estrogens and Neurodegenerative Disorders

Estrogen Action in Neuroprotection and Brain Inflammation

SILVIA POZZI^a, VALERIA BENEDUSI^a, ADRIANA MAGGI^a AND ELISABETTA VEGETO^a

^a Center of Excellence on Neurodegenerative Diseases, Department of Pharmacological Sciences, University of Milan, Via Balzaretti, 9, 20133 Milan, Italy

Key Words: estrogen receptors • inflammation • neurodegeneration

Address for correspondence: Elisabetta Vegeto, Ph.D., Center of Excellence on Neurodegenerative Diseases, Department of Pharmacological Sciences, University of Milan, Via Balzaretti, 9, 20133 Milan, Italy. Voice: 0039-0250318263; fax: 0039-0250318284. e-mail: elisabetta.vegeto@unimi.it

The fertile period of women's life compared to menopause is associated with a lower incidence of degenerative inflammatory diseases. In brain, estrogens ameliorate brain performance and have positive effects on selected neural pathologies characterized by a strong inflammatory component. We thus hypothesized that the inflammatory response is a target of

This Volume

Table of Contents
Description

This Article

Full Text Full Text (PDF)

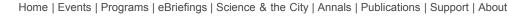
Services

Similar articles in this journal Similar articles in PubMed Alert me to new issues of the journal Download to citation manager

Citing Articles

Citing Articles via Google Scholar

Google Scholar


Articles by POZZI, S.
Articles by VEGETO, E.
Search for Related Content

PubMed

PubMed Citation
Articles by POZZI, S.
Articles by VEGETO, E.

estrogen action; several studies including ours provided strong evidence to support this prediction. Microglia, the brain's inflammatory cells, and circulating monocytes express the estrogen receptors $ER-\alpha$ and $ER-\beta$ and their responsiveness *in vivo* and *in vitro* to pro-inflammatory agents, such as lipopolysaccharide (LPS), is controlled by 17β -estradiol (E2). Susceptibility of central nervous system (CNS) macrophage cells to E2 is also preserved in animal models of neuroinflammatory diseases, in which $ER-\alpha$ seems to be specifically involved. At the molecular level, induction of inflammatory gene expression is blocked by E2. We recently observed that, differently from conventional anti-inflammatory drugs, E2 stimulates a nongenomic event that interferes with the LPS signal transduction from the plasma membrane to cytoskeleton and intracellular effectors, which results in the inhibition

of the nuclear translocation of NF- κ B, a transcription factor of inflammatory genes. Interference with NF- κ B intracellular trafficking is selectively mediated by ER- α . In summary, evidence from basic research strongly indicates that the use of estrogenic drugs that can mimic the anti-inflammatory activity of E₂ might trigger beneficial effects against neurodegeneration in addition to carrying out their specific therapeutic function.

©2006 New York Academy of Sciences, all rights reserved. Privacy Policy and Disclaimer.

7 World Trade Center, 250 Greenwich St, 40th FI, New York, NY 10007-

info@nyas.org | 212.298.8600