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Abstract

There is emerging evidence that the balance between estrogen
receptor-A (ERA) and androgen receptor (AR) signaling is a
critical determinant of growth in the normal and malignant
breast. In this study, we assessed AR status in a cohort of 215
invasive ductal breast carcinomas. AR and ERA were coex-
pressed in the majority (80-90%) of breast tumor cells. Kaplan-
Meier product limit analysis and multivariate Cox regression
showed that AR is an independent prognostic factor in ERA-
positive disease, with a low level of AR (less than median of
75% positive cells) conferring a 4.6-fold increased risk of
cancer-related death (P = 0.002). Consistent with a role for AR
in breast cancer outcome, AR potently inhibited ERA trans-
activation activity and 17B-estradiol–stimulated growth of
breast cancer cells. Transfection of MDA-MB-231 breast
cancer cells with either functionally impaired AR variants or
the DNA-binding domain of the AR indicated that the latter is
both necessary and sufficient for inhibition of ERA signaling.
Consistent with molecular modeling, electrophoretic mobility
shift assays showed binding of the AR to an estrogen-
responsive element (ERE). Evidence for a functional interac-
tion of the AR with an ERE in vivo was provided by chromatin
immunoprecipitation data, revealing recruitment of the AR to
the progesterone receptor promoter in T-47D breast cancer
cells. We conclude that, by binding to a subset of EREs, the AR
can prevent activation of target genes that mediate the
stimulatory effects of 17B-estradiol on breast cancer cells.
[Cancer Res 2009;69(15):6131–40]

Introduction

Estrogen signaling is a key determinant of the growth and
survival of normal and malignant breast epithelial cells, and this

underpins the widespread use of antiestrogens and aromatase
inhibitors in the adjuvant treatment of breast cancer (1, 2). There is
emerging evidence that androgen signaling also plays a key role in
normal and malignant breast tissues (3). Although it is generally
accepted that ovarian and adrenal androgens can influence breast
cancer cell growth by aromatization to estrogens (4), androgens
such as testosterone and its more active metabolite 5a-
dihydrotestosterone (DHT) can inhibit basal and 17h-estradiol
(E2)–stimulated proliferation of breast cancer cells by an androgen
receptor (AR)–dependent mechanism (reviewed in ref. 5). Andro-
gens have been used as hormonal therapy for breast cancer, with
an efficacy comparable with that seen with the widely used
estrogen receptor a (ERa) antagonist, tamoxifen (6, 7). Indeed, it is
possible that the greater therapeutic response of breast cancers to
aromatase inhibitors compared with tamoxifen is due to a
concomitant reduction in E2 and an increase in androgen signaling
(8). AR typically is present in a greater proportion of breast tumors
(80-90%) than ERa (50-80%; reviewed in refs. 5, 9) and previous
studies have indicated the potential for AR to predict disease
progression (10, 11). In addition, we have reported that the level of
the AR predicts both the likelihood and the duration of response to
therapy with the synthetic progestin, medroxyprogesterone acetate
(12), and that disease progression after medroxyprogesterone
acetate therapy is associated with inactivating mutations in the AR
gene (13). What is unclear, however, is the mechanism by which
androgens influence hormonal sensitivity and disease progression
in breast cancer and how best to use AR signaling to modulate the
growth of breast cancer cells (9, 14). In this study, we show that the
AR level is significantly associated with disease outcome in ERa-
positive breast cancer. We further show that AR is a direct
repressor of ERa signaling in breast cancer cells and show for the
first time that this is due to an association of the AR with response
elements of estrogen target genes.

Materials and Methods

Cell lines and tissues. MDA-MB-231, T-47D, and COS-1 cells (American
Type Culture Collection) were maintained in RPMI 1640 supplemented with

5% fetal bovine serum (FBS). 293A cells (Invitrogen) were maintained in

DMEM (high glucose) supplemented with 10% FBS, 0.1 mmol/L MEM

nonessential amino acids, 2 mmol/L L-glutamine, and 1% penicillin-
streptomycin. Tissue microarrays consisted of 215 invasive ductal

carcinoma samples (15). Grading was according to the modified Bloom

and Richardson system, and 157 of 215 samples were ERa positive based on
a cut point of 10% positive tumor cells. All protocols were approved by the

Note: Supplementary data for this article are available at Cancer Research Online
(http://cancerres.aacrjournals.org/).

A.A. Peters and G. Buchanan contributed equally to this work. L.M. Butler and W.D.
Tilley codirected this project.

Current address for N.L. Moore: Department of Molecular and Cellular Biology,
Baylor College of Medicine, Houston, TX.

Requests for reprints: Wayne D. Tilley, Chair, Dame Roma Mitchell Cancer
Research Laboratories, Discipline of Medicine, University of Adelaide, Hanson
Institute, P.O. Box 14, Rundle Mall, Adelaide, South Australia, Australia 5000. Phone:
61-8-8222-3225; Fax: 61-8-8222-3217; E-mail: wayne.tilley@imvs.sa.gov.au.

I2009 American Association for Cancer Research.
doi:10.1158/0008-5472.CAN-09-0452

www.aacrjournals.org 6131 Cancer Res 2009; 69: (15). August 1, 2009

Endocrinology



St. Vincent’s Hospital Campus Human Ethics Committee and the Human
Research Ethics Committee of the University of Adelaide.

Plasmids. Estrogen-responsive element (ERE)-tk-luc and ERa (pSG5-

HEGO) vectors were provided by Profs. Alessandro Weisz (Seconda

Universita di Napoli) and Pierre Chambon (College de France), respectively.
pCMV-AR, ARD553-622, and ARD38-410, ARD38-532 have been described

(16–18). AR-23AQNAA27 and AR-C617Y variants were created in pCMV-AR

and AR(1-707) using PCR megaprimer mutagenesis as described previously

(19). Deletions were recreated in AR(1-707) by subcloning. pSG5-HA-
AR(553-662) was created by PCR amplification of the AR DNA-binding

domain (DBD) coding sequence using 5-TTGAATTCCAGAAGACCTGCCT-

GATCTG-3¶ and 5-TTGGATCCTCACATCCCTGCTTCATAACATT-3¶ and

cloning into pSG5-HA. AR(1-707) was subcloned into the Gateway
adenoviral expression vector pAD/CMV/V5-DEST (Invitrogen).

Transactivation assays. MDA-MB-231 or T-47D cells (1.75 � 104 and

1.5 � 104 per well, respectively, in 96-well plates) were transfected as
described previously (16) with 100 ng ERE-tk-luc, 2.5 ng ERa ( for MDA-MB-

231 cells), and either an AR expression vector or a parental, control pCMV

vector. The total amount of expression vector and DNA was kept constant

in each transfection with pCMV and pBS(sk-). Cells were treated for 36 h in
medium containing 5% DCC-FBS and steroid or vehicle control, lysed, and

assayed for luciferase activity.

Immunohistochemistry, immunoblot, and immunoprecipitation.
Immunohistochemistry was done using AR-U407 antiserum on 4 Am
sections of breast cancer tissue microarray blocks as described previously

(20). Staining was scored in duplicate cores by visual appraisal of 100 cells in

each of two fields of view and is presented as percent AR-positive cells.

Images shown were obtained using a Nanozoomer slide scanner

(Hamamatsu) and captured using NDPview software (Hamamatsu).

Immunoblot analysis was done on (a) lysates of MDA-MB-231 cells

(5 � 105 cells per well in 6-well plates) transfected with ERa (500 ng) or

AR(1-707) expression vectors or pCMV, (b) lysates of cells transfected in

96-well plates, or (c) T-47D cells transduced with pAD-AR(1-707). Antisera

used were AR(N-20), ERa(HC-20), cathepsin D (CTSD; H-75), h-actin (I-19;

Santa Cruz Biotechnology), and progesterone receptor (PGR; hPRa3,

provided by Prof. Christine Clarke, Westmead Millennium Institute,

University of Sydney). Coimmunoprecipitation was done in T-47D or COS-

1 cells transfected with AR and ERa expression vectors using AR(N-20) and

ERa(HC-20) antisera. Chromatin immunoprecipitation assays were con-

ducted using AR(N-20), ERa(H184), and normal rabbit IgG (Santa Cruz

Biotechnology) antisera as described previously (21) on serum-starved

T-47D cells (3 � 106 per 150 mm dish) treated for 45 min with 10 nmol/L

DHT and/or 10 nmol/L E2. Real-time PCR was done using either SYBR

Green incorporation or FAM-labeled probes with primers to the following

regions: KLK3/prostate-specific antigen (PSA) enhancer (Chr19: 56,045,991-

56,046,075), CTSD enhancer 1 (Chr11: 1,750,279-1,750,879), PGR enhancer 1

(Chr11: 100,674,936-100,675,904), and nonspecific control (Chr20: 44,141,632-

44,141,782). Input values were obtained from parallel samples that were not

immunoprecipitated.

Immunofluorescence. Tissue sections (2 Am) were dewaxed, rehy-

drated, and blocked with 30% hydrogen peroxide. After antigen retrieval in

citrate buffer (pH 6.5), sections were incubated with 5% blocking serum for
30 min and then overnight with ERa (1:50; Santa Cruz Biotechnology) and

AR (1:50; DAKO) primary antibodies in a humid chamber at 4jC. Secondary
antibodies Alexa Fluor 594 (AR, 1:400; Invitrogen) and Alexa Fluor 488 (ERa,
1:400; Invitrogen) were incubated for 1 h each at room temperature. The
sections were then counterstained with 4¶,6-diamidino-2-phenylindole and

mounted with special fluorescence mounting medium (DAKO). Slides were

viewed using an Olympus IX71 fluorescent microscope and images were
obtained with an Olympus DP70 cooled digital color camera at �20

magnification.

Adenoviral transduction. Viral pAD-LacZ and pAD-AR(1-707) stocks

were prepared in 293A and purified by CsCl gradient centrifugation. T-47D
cells (2 � 104 per well in 24-well plates) were transduced with virus at a

multiplicity of infection of 15 for 16 h. Medium was replaced with RPMI

1640 supplemented with 5% FBS or 5% DCC-FBS and 1 nmol/L E2 or

vehicle. Viable cells were assessed by trypan blue exclusion.

Electrophoretic mobility shift assay. Nuclear extracts from COS-1 cells
untransfected or transfected with AR or ERa expression vectors were

incubated alone or in combination with the appropriate synthetic

complementary oligonucleotides (vitellogenin A2 ERE 5¶-AGCTTTTCTA-
GAAGGTC ACAG TGACCTACTAGT-3¶ and PSA/KLK3 PSA androgen-
responsive element (ARE) 5¶-AGCTTCTTGCAGAACA GCA AGTGC-

TAGCTG-3¶) labeled with [a32P]dATP (200,000 cpm) and where appropriate

with AR(N-20) and ERa(G-20)X antisera (Santa Cruz Biotechnology). Bands

were resolved by electrophoresis on 5% polyacrylamide (acrylamide/
bisacrylamide, 29:1), nondenaturing gels in 0.5� TGE (12.5 mmol/L

Tris, 95 mmol/L glycine, 0.5 mmol/L EDTA), according to previous

methodology (22).

Molecular modeling and molecular dynamic simulation. Molecular
modeling was done as described previously (23) with the YASARA Dynamics

Program (version 6.2.4; ref. 24). Briefly, AR-DBD (PDBid 1R4I) and ERa-DBD
(PDBid 1HCQ; ref. 25) crystal structures were superimposed and the ARE
was mutated in silico , so that it accorded with the consensus ERE.

Molecular dynamic simulations (7.6 Å cutoff with a particle Ewald mesh

approximation used for longer-range electrostatic forces) were done in a

cell with periodic boundaries extending 10 Å outside the target structure in
all three axes filled with water molecules subject to simulated annealing

energy minimization. Snapshots taken at 50 ps intervals for 500 ps were

overlaid with those of the AR-DBD/ARE.

Statistical analysis. For the Kaplan-Meier plots and the Cox propor-
tional hazards model, statistical analyses were done using the Statistical

Package for the Social Sciences version 13.0, with relapse and/or death from

breast cancer as the endpoints. All other statistical analyses were done
using GraphPad Prism version 5.02 and statistical significance accepted at

P V 0.05. Comparisons between multiple groups were analyzed using one-

way ANOVA with Tukey’s post-hoc test.

Results

AR expression in breast cancer is related to overall survival
in ERA-positive but not ERA-negative disease. To assess the
prognostic value of AR expression in breast cancer, we undertook
immunohistochemical analysis of AR in a cohort of 215 invasive
ductal breast carcinomas of known ERa status (Supplementary
Table S1). Moderate to intense AR immunoreactivity was observed
in the nuclei of tumor cells, with a mean percent AR positivity
of 62.8%, a median of 75%, and a range of 0% to 96%. Weak
cytoplasmic staining was also observed in some tumors. To assess
the potential effect of AR on ERa function, we divided the cohort
into ERa positive (157 cases) and ERa negative (58 cases). The
median AR immunostaining in ERa-positive cases (84.0%) was
significantly greater than in ERa-negative disease (19.75%; P <
0.0001), although the range of immunostaining in both groups was
almost identical (Supplementary Table S1; Fig. 1A and B). Kaplan-
Meier product limit analysis with the median percent AR
positivity in tumor cells for the entire cohort (75%) as a cut
point showed that AR is significantly associated with overall
survival in ERa-positive disease (Fig. 1C ; P = 0.002) but not ERa-
negative disease (Fig. 1D ; P = 0.32). In ERa-positive breast cancer,
multivariate Cox regression analysis indicated a 3.0-fold increased
risk of relapse and a 4.6-fold increased risk of cancer-related death
for patients with lower than the median percent AR positivity in
tumor cells (Supplementary Tables S2 and S3).
Evidence for functional interactions between AR and ERA in

breast cancer cells. To determine whether AR has the potential to
influence ERa activity in individual breast cancer cells, we first
used dual-labeling immunofluorescence of both receptors to show
that AR and ERa are coexpressed in normal breast epithelial cells,
although AR is expressed in a greater percentage of epithelial cells
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than ERa, and are colocalized in a high percentage (80-90%) of
breast tumor cells (Fig. 2A ; n = 5). Given that AR and ERa are
coexpressed in breast tumor cells, we then assessed whether AR
affects ERa transactivation function in breast cancer cells by
ectopically expressing both receptors as well as a luciferase-linked
ERa-responsive reporter gene in the AR- and ERa-negative MDA-
MB-231 human breast cancer cell line. A dose-dependent inhibition
of ERa activity was observed following transfection of increasing
amounts of wild-type AR in the presence of the activating ligand,
DHT (Fig. 2B).
A constitutively active AR inhibits endogenous ERA trans-

activation in, and proliferation of, breast cancer cells. We next
determined whether AR signaling can inhibit endogenous ER
activity to affect E2-dependent growth of breast cancer cells.
We used an AR variant, AR(1-707), that lacks the ligand-binding
domain and exhibits strong constitutive activity on exogenous
androgen-responsive promoters (18). Transfection of increasing
amounts of AR(1-707) expression vector into T-47D human breast
cancer cells resulted in a dose-dependent decrease in endogenous
ER signaling (Fig. 3A). Transduction of T-47D cells with adenovirus
expressing AR(1-707) resulted in a significant reduction in the
number of viable cells after 3 and 6 days growth in medium
containing 5% FBS compared with LacZ control or mock-
transduced cells (Fig. 3B). Immunoblot analysis of T-47D cells
transduced with AR(1-707) revealed a concomitant decrease in
protein levels of the PGR, an E2-regulated protein (Fig. 3B).
Moreover, compared with mock treatment or transduction of LacZ,
AR(1-707) inhibited E2-induced proliferation of T-47D cells at a
level comparable with treatment with the ERa antagonist,
tamoxifen (Fig. 3C). Immunoblot analysis done on the same
samples at day 3 revealed that both tamoxifen and AR(1-707)
abolished E2-mediated induction of PGRA and PGRB but not of
CTSD (Fig. 3D).
AR(1-707) requires DNA binding, but not transactivation

capacity, to inhibit ERA activity. To determine how the
AR(1-707) variant might inhibit ERa activity, we created a series
of deletion and mutation constructs that affect the transcriptional
output of the AR variant on an androgen-responsive reporter gene
(Fig. 4A) and tested their capacity to inhibit ERa activity in
transfected MDA-MB-231 cells. Increasing the amount of AR(1-707)
transfected caused a potent dose-dependent decrease in ERa
activity (Fig. 4B). An effect of AR(1-707) on ERa protein levels does
not appear to be responsible for reduced ERa-induced activity
(Fig. 4B). Cell- and promoter-specific activity of the AR is driven by
two autologous activation functions in the receptor NH2-terminal
transactivation domain, Tau-1 and Tau-5 (Fig. 4A). Deletion of the
minimal domain of Tau-1 (residues 157-361), the complete Tau-1
(residues 38-410), or both Tau-1 and Tau-5 (38-535) had minimal
effects on the capacity of AR(1-707) to inhibit ERa activity (Fig. 4C).
Similarly, mutation of the AR NH2-terminal transactivation domain
23FQNLF27 peptide, which in the full-length AR engages directly
with the conserved AF-2 surface in the ligand-binding domain
following ligand binding (the AR N/C interaction; ref. 26) and is
necessary for AR transcriptional competence in vivo , did not affect
inhibition of ERa activity by AR(1-707) (Fig. 4C). These results
suggest that inherent transactivation capacity of the AR, or
interaction of the AR-FQNLF peptide with AF-2 in ERa, does not
contribute to inhibition of ERa by AR(1-707). In contrast, when the
DBD of AR(1-707) was deleted (D553-662), or DNA-binding capacity
was disrupted by the C617Y variant, the constitutive variant was no
longer capable of inhibiting ERa activity (Fig. 4D). The loss of an

inhibitory effect of the AR variants on ERa activity was not due to
decreased levels of variant AR protein (Fig. 4D), implying that
DNA-binding competence of AR(1-707) is necessary for inhibition
of ERa activity.

Figure 1. AR expression in breast cancer influences overall survival in
ERa-positive but not ERa-negative disease. A, examples of z75%
AR-positive cells and <75% positive cells (AR-U407 antibody) in ERa-positive
and ERa-negative breast cancer samples on tissue microarrays. Original
magnifications, �5 (inset ) and �20 (main image). B and C, Kaplan-Meier
product limit analysis of overall survival in ERa-positive and ERa-negative breast
cancer patients, respectively. Patients were dichotomized by the median
percent AR-positive nuclear area (75%).

Androgen Receptor Action in Breast Cancer
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Inhibition of ERA activity by full-length AR requires DNA
binding but not constitutive interaction between these
proteins. Unlike DHT, the selective AR modulator medroxyproges-
terone acetate induces AR activity but does not favor formation of
the AR N/C interaction (27). We found that full-length AR activated
by DHT or medroxyprogesterone acetate (albeit at a higher con-

centration) had an almost identical capacity to mediate inhibition of
ERa activity (Fig. 5A). This result implies that the ARN/C interaction
is not necessary for inhibition of ERa activity by full-length AR. A
similar finding was obtained using the AR-E895Q variant, which is
also capable of transcriptional activity but contains a N/C disrupting
mutation in the core of AF-2 (data not shown). Analogous to
AR(1-707), deletion of the DBD from the full-length AR completely
abrogated DHT-induced inhibition of ERa activity (Fig. 5B).
Consistent with these findings, overexpression of the AR-DBD was
sufficient to inhibit ERa activity without the requirement for ligand
(Fig. 5B). Using immunoprecipitation, we were not able to detect a
robust interaction between endogenous ERa and AR in T-47D
human breast cancer cells (Fig. 5C) or between ERa and AR(1-707) in
transfected COS-1 cells (data not shown). Similar to previous reports
(28), we were able to show aweak interaction between full-length AR
and ERa when these proteins were overexpressed in COS-1 cells
(data not shown). Collectively, these data suggest that the DBD of
AR is essential and sufficient for inhibition of ERa activity and that a
direct interaction between these proteins probably is not a major
contributing mechanism.
AR can interact with ERE. Comparison of the DNA binding

logos defined by recent genome-scale studies (29–32) reveals an
important distinction between an ERE and an ARE (Fig. 6A).
Namely, an ARE is much less constrained in sequence homology
than an ERE, which implies that the AR is capable of binding to a
greater diversity of response elements than ERa. To test whether AR
can bind to an ERE to interfere with ERa transactivation of a target
gene, we first used an electrophoretic mobility shift assay to show
binding of the AR to both a consensus ARE and a consensus ERE.
Specificity of AR binding to the vitellogenin ERE was confirmed by
supershift analysis with a specific AR antibody (Fig. 6B). The con-
verse was not observed, with ERa binding confined to the
consensus ERE. In reactions containing both AR and ERa, super-
shift analysis found no evidence for AR/ERa heterodimer formation
(Fig. 6B), suggesting that AR binds to the consensus ERE as a
homodimer. Using in silico molecular dynamic simulation, we
assessed whether it is possible to exclude an interaction of the AR
with an ERE. We created a dynamic simulation of the AR-DBD
homodimer bound to the consensus ERE by successively mutating
the PSA-ARE in the solved AR-DBD homodimer crystal structure
(Fig. 6C, left). The minimal similarity of these AR/PSA-ARE and AR/
ERE simulations suggests that the AR-DBD can form a stable
interaction with the consensus ERE in a conformation almost
identical to that formed on an ARE. In contrast, molecular modeling
virtually excludes the possibility of an AR/ERa heterodimer forming
on an ERE (Fig. 6C, right), which is in agreement with the
electrophoretic mobility shift assay results. In particular, our model
predicts a clash between AR-A594 and ERa-P222 residues that op-
pose conserved arginines (AR-R605/ERa-R233) at the dimer inter-
face and makes a heterodimer on DNA unlikely. Indeed, the ERa
DBD homodimer interface is thought to be intrinsically weak (33).

To assess the potential for AR to bind to EREs in vivo , we
interrogated known androgen and estrogen target promoter
regions by chromatin immunoprecipitation assays. AR, but not
ERa, was found to occupy the androgen-responsive PSA/KLK3
enhancer in a ligand-dependent manner (Fig. 6D). ERa and AR
were found to occupy the estrogen-responsive CTSD promoter only
when both ligands (E2 + DHT) were added to the cultures (Fig. 6D).
In contrast, we detected occupancy of both AR and ERa to the PGR
promoter in the absence of ligands and increased recruitment of
both proteins in the presence of E2 but not DHT (Fig. 6D).

Figure 2. Functional interactions between AR and ERa signaling in breast
epithelial cells. A, colocalization of AR and ERa in human breast tissues.
Samples of normal (top ; n = 5) and malignant (bottom ; n = 5) breast tissues
were analyzed by dual-label immunofluorescence using AR- and ERa-specific
primary antibodies and Alexa Fluor 594–labeled (AR; red) and Alexa Fluor
488–labeled (ERa; green) secondary antibodies. Colocalization of the two
receptors is indicated in the merged image. B, inhibition of ERa activity by AR in
human breast cancer cells. MDA-MB-231 human breast cancer cells were
transfected with an ERa expression vector and the ERE-tk-luc luciferase reporter
construct along with 0�, 1�, 2�, or 4� molar excess of AR expression vector
and treated for 36 h with vehicle control (v.c. ) or ligands as indicated and
assayed for luciferase activity. Data in this and subsequent figures represent
mean F SE activity from six individually transfected wells and presented as
a percentage of activity induced by 1 nmol/L E2 in the presence of ERa.
*, P V 0.05, ANOVA.
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Recruitment to the PGR promoter supports the effect of AR on
E2-induced PGR expression shown in Fig. 3B and D , albeit the latter
was mediated by a constitutively active AR variant. These findings
are consistent with the enhanced ability of AR to inhibit E2-induced
PGR expression compared with CTSD (Fig. 3D). The above results
suggest that the AR can be recruited to specific EREs and that
the interaction is likely dependent on priming of that response
element by E2/ERa.

Discussion

In this study, we provide important new insights into the
interplay between AR and ERa signaling in breast cancer. Our
findings provide evidence that inhibition of breast cancer growth
by androgens is mediated primarily through the AR rather than by

indirect mechanisms such as hormone metabolism, nongenomic
steroid signaling, or actions of the unliganded receptor as have
been suggested previously (34, 35). This is evident first from
analysis of AR in clinical breast cancer and its relationship to
survival. In ERa-positive disease, AR was an independent predictor
of disease outcome, with AR percent positivity in tumor cells of
<75% being associated with a significantly reduced relapse-free and
overall survival. Furthermore, DHT was required in our in vitro
studies for inhibition of ERa by the full-length AR but not for
inhibition by a strong constitutive truncated AR variant. An
important finding in the current study is that ERa activity could be
inhibited equally by wild-type AR or AR deletion variants with
minimal intrinsic (f9%) transcriptional capacity, which implies
that the effect of androgens on breast cancer cells derives primarily
from inhibition of ERa signaling rather than via activation of

Figure 3. Inhibition of ER activity and E2-induced growth of T-47D cells by constitutively active AR. A, inhibition of E2 activity by AR(1-707). T-47D cells were
transfected with the ERE-tk-luc reporter and increasing amounts of AR(1-707), treated for 36 h as shown, and assayed for luciferase activity. Data are presented as
percent of activity with 1 nmol/L E2 in cells without AR(1-707). B and C, inhibition of cell growth by AR(1-707). T-47D cells were mock treated or transduced with
adenovirus expressing LacZ or AR(1-707) (multiplicity of infection of 15) and grown in (B) 5% FBS or (C ) 5% DCC-FBS with vehicle control, 1 nmol/L E2, or 1 nmol/L
E2 and 1000 nmol/L tamoxifen (TAM ). Viable cells were counted manually using trypan blue exclusion. Mean F SE percent viable cells in triplicate wells compared
with mock treatment at (B) 6 or (C ) 9 d. B, insets, LacZ expression 4 d after infection and an immunoblot at 6 d. D, immunoblot analysis from cells treated as in C for 3 d
shows AR, AR(1-707), PGR isoforms, CTSD, and h-actin (ACTB ). *, P V 0.05, ANOVA.
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AR-regulated target genes. In support of this hypothesis, inhibition
of E2-induced proliferation of human breast cancer cells by both
tamoxifen and the constitutive truncated AR was accompanied by
an identical effect on E2-regulated targets, that is, a decrease in the
level of PGR but not of CTSD. This latter effect is consistent with
recruitment of AR to the promoter of PGR but not CTSD in the
presence of DHT alone as determined by chromatin immunopre-
cipitation analyses. Given the apparent higher redundancy in the
AR DNA sequence recognition (see Fig. 6A), molecular modeling
indicates that there are no specific energy constraints that would
theoretically preclude binding of AR to either the PGR or CTSD
enhancer sequences (data not shown). The differential recruitment

of AR to these two promoters is not unexpected, considering the
well-documented role of pioneer and other collaborating tran-
scription factors in directing binding of nuclear receptors to
particular canonical and noncanonical DNA elements and in
stabilizing those interactions. Collectively, these data provide
compelling evidence that binding of AR to ERa-regulated genes
can occur in vivo and indicates a mechanism by which AR may
regulate ERa function in breast cancer cells.

The common evolutionary origin of AR, ERa, and other nuclear
receptors provides several avenues through which their function
could be reciprocal, including formation of homodimers and
heterodimers, recognition of similar nucleotide motifs, and

Figure 4. Inhibition of ERa activity by AR(1-707) requires DNA binding but neither the 23FQNLF27 peptide nor autologous transcriptional functions. A, schematic of the
AR and variants delineating the NH2-terminal transactivation domain (NTD ), hinge (H ), domains for DNA-binding (DBD ) and ligand-binding (LBD ), and transactivation
functions Tau-1 and Tau-5. Percentages represent relative activity on an ARE in MDA-MB-231 cells. B, inhibition of ERa activity by AR(1-707). MDA-MB-231 cells
were transfected as Fig. 2. Data are presented relative to ERa alone with 1 nmol/L E2. Immunoblot shows AR, ERa, and h-actin levels in parallel transfected cells. ERa
levels relative to h-actin were calculated from densitometry. C, inhibition of ERa activity by AR(1-707) requires neither an intact 23FQNLF27 peptide nor AR
transactivation functions. Cells were transfected with AR variants and assayed as Fig. 2B . D, inhibition of ERa activity by AR(1-707) requires the DBD. Cells were
transfected and assayed as in Fig. 2B . Immunoblot assays show AR expression in cell lysates. *, P V 0.05, ANOVA.

Cancer Research

Cancer Res 2009; 69: (15). August 1, 2009 6136 www.aacrjournals.org



recruitment of numerous common transcriptional coregulators in
the modulation of chromatin structure and gene transcription. In
the current study, we did not show an interaction between AR and
ERa either in whole-cell extracts or on DNA. In support of this, our
modeling studies virtually preclude the possibility of ERa/AR
heterodimerization on EREs. Although a previous study has shown
the potential for ERa/AR heterodimerization (36), it was estimated
that this interaction involved <10% of the cellular pool of ERa and
AR, suggesting that this mechanism is unlikely to explain the
marked effect of AR on ERa activity. An alternative means of
antagonism could involve squelching of limited transcriptional
coregulators (35, 37, 38), but this appears to be an unlikely
mechanism as transcriptionally inert ARs deleted of essentially all
known transactivation/coregulator recruitment domains retained
the capacity to effectively inhibit ERa, whereas those that retained
these regions but deleted of the DBD had no effect.

A novel aspect of the current study was the finding that AR can
bind to a consensus ERE in vitro , and to a subset of endogenous
ERa regulatory sites in vivo , and that the AR DBD is necessary and
sufficient for inhibition of ERa activity by the AR. Although not
always recognized, there is nonetheless considerable data indicat-
ing that crosstalk between response elements might be a common
phenomenon within the nuclear receptor superfamily. For example,

ERa interacts with peroxisome proliferator-activated receptor-g
and inhibits its activity by binding to the consensus peroxisome
proliferator-activated receptor response element (39). The orphan
nuclear receptor hERRa1 has been shown to bind to the ERE in the
E2-regulated CTSD gene promoter (40). On the other hand, the
thyroid hormone receptor can potentiate ERa activity in a
mechanism independent of thyroid hormone receptor/DNA
interactions (41) but can bind to the ERE in the PGR promoter
(42). For each nuclear receptor, the consensus response element
has historically been defined by binding sequences usually in the
form of two palindromic/inverted hexameric half sites separated by
a three-nucleotide spacer, adjacent to genes transcriptionally
responsive by that receptor. However, for the AR and ERa, there
is evidence for interactions with sequences that do not conform to
the defined consensus response element (43, 44). The AR is also
unique in that it can bind to response element half-sites arranged
as both inverted and direct repeats (45, 46). Compared with other
nuclear receptors, the AR makes additional stabilizing interactions
at the AR-DBD dimer interface, which increases its relative affinity
for nonconsensus response elements (47). These concepts have
recently been tested by unbiased genome-scale capture of steroid
receptor binding sites in intact cells (29–31). Those studies have
shown that the consensus response elements for AR and ERa are

Figure 5. Inhibition of ERa activity by the full-length AR requires ligand activation of the AR and an intact DBD but neither the AR N/C interaction nor a strong
interaction between AR and ERa. A, inhibition of ERa by AR requires ligand activation but not the AR N/C interaction. MDA-MB-231 cells were transfected as in
Fig. 2. Data are presented as percent of activity induced by ERa alone for each treatment. B, AR DBD is necessary and sufficient for inhibition of ERa by the full-length
AR. MDA-MB-231 cells were transfected as in Fig. 2. C, immunoprecipitation of endogenous ERa and AR in T-47D cells does not reveal a strong interaction
between these proteins. T-47D cells were cultured as shown and immunoprecipitated with AR(U407), ERa(HC-20), or IgG antisera. Immunoblot was done with either
AR(N-20) (left ) or ERa(HC-20) (right ) antisera. *, P V 0.05, ANOVA.
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more redundant than previously thought and that the AR, in
particular, shows much greater flexibility in binding to variable
sequences than would have been predicted previously (30, 31). Our
data thereby support the notion that the inherently greater
plasticity in response element recognition by the AR is permissive
for binding to a subset of EREs. We hypothesize that binding of the
AR to an ERE will interfere with the cyclic recruitment of ERa and

its coregulators at these sites (48), thereby preventing the estrogen-
dependent progression of those loci to an active transcriptional
regulatory sequence. A key question arising from our studies is
whether AR binds preferentially to subsets of ERa-regulated genes
based on the nature of their ERE and potentially adjacent sequence
elements. This could be addressed by demarcating the ERa
cistrome into classes that are affected by AR and those that are not,

Figure 6. Interaction of the AR with ERE in vitro. A, logos of ARE and ERE from genomic-scale studies reveals that recognition of DNA by AR is less constrained than
ERa. Vitellogenin and C3-1 elements used in B are shown. B, nuclear extracts from COS-1 cells transfected with AR or ERa were used alone or combined at 2:1
or 4:1 ratios in electrophoretic mobility shift assays with vitellogenin ERE or C3-1 ARE oligonucleotides. *, ERa(G-20) or AR(N-20) antisera were included. C, in silico
modeling predicts binding of AR-DBD homodimers to EREs and that AR/ERa DBD heterodimers are unlikely. Left, accumulated molecular dynamic snapshots of
an AR DBD homodimer on the vitellogenin ERE (magenta ) or PSA-ARE (cyan), which suggest stable/productive engagement of both; right, DBD monomers of
AR (cyan) and ER (red) superimposed on the vitellogenin ERE predicts that residues opposing AR-R605/ER ERa-R233 will preclude formation of a productive
heterodimer. D, chromatin immunoprecipitation assays using AR, ERa, and IgG antisera in T-47D cells treated as shown. Enriched chromatin was assayed by real-time
PCR for AR binding sites in the KLK3/PSA enhancer, ERa binding sites in the CTSD enhancer, and ERa binding sites in the PGR promoter. Data are presented as a
percent of input and represent mean F SD for triplicate PCRs. Horizontal blue lines, maximum values for the nonspecific control site. *, P V 0.05, ANOVA. Images in
panel A are reproduced with permission from Cell (top ) and PLoS ONE (bottom ).
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using a genome-wide analysis of AR and ERa binding loci, and
superimposing that data on target gene expression related to the
breast cancer phenotype.

In summary, we have identified a previously unrecognized
mechanism for the specific and direct inhibition of ERa activity by
the AR in breast cancer cells. Our findings have important
implications for understanding how the balance between these
two pivotal hormone signaling pathways is critical for the growth
and survival of breast cancer cells. Alternative therapeutic
strategies targeting the AR signaling pathway in breast cancer
could be particularly beneficial for women who relapse while being
treated with conventional estrogen ablation therapies or are
adversely affected by long-term, systemic estrogen depletion with
aromatase inhibitors. Furthermore, our finding that AR is an
independent predictor of outcome in ERa-positive breast cancer
suggests that routine measurement of AR and inclusion in
prognostic algorithms such as Oncotype Dx (49) may be warranted
to improve disease management.
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