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Serum androgens as well as their precursors and metabolites
decrease from the age of 30-40 yr in women, thus suggesting
that a more physiological hormone replacement therapy at
menopause should contain an androgenic compound. It is im-
portant to consider, however, that most of the androgens in
women, especially after menopause, are synthesized in pe-
ripheral intracrine tissues from the inactive precursors de-
hydroepiandrosterone (DHEA) and DHEA sulfate (DHEA-S) of
adrenal origin. Much progress in this new area of endocrine
physiology called intracrinology has followed the cloning and
characterization of most of the enzymes responsible for the
transformation of DHEA and DHEA-S into androgens and es-
trogens in peripheral target tissues, where the locally pro-
duced sex steroids are exerting their action in the same cells
in which their synthesis takes place without significant dif-
fusion into the circulation, thus seriously limiting the inter-
pretation of serum levels of active sex steroids. The sex ste-
roids made in peripheral tissues are then inactivated locally

into more water-soluble compounds that diffuse into the gen-
eral circulation where they can be measured. In a series of
animal models, androgens and DHEA have been found to in-
hibit breast cancer development and growth and to stimulate
bone formation. In clinical studies, DHEA has been found to
increase bone mineral density and to stimulate vaginal mat-
uration without affecting the endometrium, while improving
well-being and libido with no significant side effects. The ad-
vantage of DHEA over other androgenic compounds is that
DHEA, at physiological doses, is converted into androgens
and/or estrogens only in the specific intracrine target tissues
that possess the appropriate physiological enzymatic machin-
ery, thuslimiting the action of the sex steroids to those tissues
possessing the tissue-specific profile of expression of the
genes responsible for their formation, while leaving the other
tissues unaffected and thus minimizing the potential side ef-
fects observed with androgens or estrogens administered
systemically. (Endocrine Reviews 24: 152-182, 2003)
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I. Androgens and Their Role in Women
A. Introduction

HE MOST WIDELY recognized fact about menopause is
that it is accompanied by a rapid arrest of estrogen
secretion by the ovaries. The cessation of ovarian estrogen
secretion is illustrated by the marked decline in circulating
17B-estradiol (E,) levels. This easily measurable change in
circulating E,, coupled with the demonstrated benefits of
estrogens on menopausal symptoms and bone resorption (1),
has concentrated almost all of the efforts of hormone re-
placement therapy (HRT) on various forms of estrogens as
well as combinations of estrogen and progestin to avoid the
potentially harmful stimulatory effects of estrogens used
alone on the endometrium, which can result in endometrial
hyperplasia and cancer. It should be mentioned, however,

Abbreviations: ADT-G, Androsterone glucuronide; AR, androgen
receptor(s); DHEA, dehydroepiandrosterone; DHEA-S, DHEA sulfate;
DHT, dihydrotestosterone; 3a-diol-G, androstane-3«,173-diol glucuro-
nide; 3B8-diol-G, androstane-33,17B-diol glucuronide; 5-diol, androst-5-
ene-33,173-diol; 4-dione, androstenedione; DMBA, dimethylbenz-
(a)anthracene; E;, estrone; E,, 17B-estradiol; ERT, estrogen replacement
therapy; HRT, hormone replacement therapy; HSD, hydroxysteroid
dehydrogenase; MPA, medroxyprogesterone acetate; PRAP, prolactin
receptor-associated protein.
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that although progestins are well recognized to protect the
endometrium, preclinical (2-4) and clinical (5-7) data
strongly suggest that they have a negative impact on breast
cancer. The recent data of the Women’s Health Initiative
Study show that the combination of Premarin and Provera
(Prempro) causes a 26% increase in the risk of breast cancer
at 5.2 yr of follow-up, thus seriously questioning the use of
a progestin as part of HRT in postmenopausal women (8).

Despite the well known beneficial effects of estrogen ther-
apy on menopausal symptoms (9-11) and their role in re-
ducing bone loss and possibly coronary heart disease (12-17),
compliance is low. The majority of women decide not to take
estrogens or stop treatment early because of the fear of breast
and uterine cancer (11) and of symptoms associated with this
therapy, namely uterine bleeding, breast tenderness, and
fluid retention.

The almost exclusive focus on the role of ovarian estrogens
at menopause has removed the attention from the progres-
sive and dramatic fall in circulating dehydroepiandrosterone
(DHEA), which starts early at the age of 30—-40 yr (18-23).
Because DHEA is transformed into both androgens and es-
trogens in peripheral tissues, such a fall in the serum con-
centration of the steroid precursors DHEA and DHEA sulfate
(DHEA-S) explains why postmenopausal women, as dis-
cussed later, are not only lacking estrogens but are also
deprived from androgens. Moreover, women taking contra-
ceptives or estrogen replacement therapy (ERT) have re-
duced ovarian androgen secretion attributable to inhibition
of gonadotropin secretion, as well as reduced androgen bio-
availability attibutable to increased SHBG levels (24).

B. Decrease of serum DHEA, androgens, and their
metabolites with age

Until recently, because of assay difficulties, only a limited
number of circulating adrenal and gonadal steroids have
been measured during advancing age, thus limiting the eval-
uation of the relative role of different sources of sex steroids.
This analysis is of special importance in postmenopausal
women in whom the sex steroids of adrenal origin gain
particular importance after the arrest of estrogen secretion by
the ovaries at menopause (25). It is important to recall that
in the 50- to 60-yr-old age group, serum DHEA has already
decreased by 70%, compared with the 20- to 30-yr-old peak
values (Ref. 23; Fig. 1). It is thus quite remarkable that most
of the important decline in circulating DHEA, DHEA-S,
androst-5-ene-383,17B-diol (5-diol), 5-diol-G, androstenedi-
one (4-dione), and the conjugated metabolites of androgens,
namely androsterone glucuronide (ADT-G), androstane-
3a,17B-diol glucuronide (3a-diol-G), and androstane-
3B,17B-diol glucuronide (38-diol-G), occurs between the age
ranges of 20-30 and 50-60 yr, whereas relatively smaller
changes occur after the age of 60 yr (23). It is important to
realize, as illustrated in Fig. 2, not only that serum DHEA and
DHEA-S decrease by 50% between the ages of 21 and 40 yr
but also that a similar decrease is observed for serum tes-
tosterone (26). Such data could well suggest that HRT with
androgens should start early at menopause to compensate
for this early fall in the secretion of androgen precursors by
the adrenals and the parallel decrease in serum testosterone.
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Fic. 1. Effect of age (20-30 to 70—80 yr old) on serum concentration
of DHEA (A), DHEA-S (B), DHEA-fatty acid esters (DHEA-FA; C),
and 5-diol (D) in women. A marked decline is shown in serum con-
centrations of adrenal C19 sex steroid precursors and conjugated
androgen metabolites during aging (26). [Reproduced with permis-
sion from F. Labrie et al.: J Clin Endocrinol Metab 82:2396-2402,
1997 (23). © The Endocrine Society.]

Using the serum concentrations of ADT-G, 3a-diol-G, and
3B-diol-G as estimates of total androgens, the average sum
of the serum concentrations of these conjugated metabolites
of dihydrotestosterone (DHT) are 37.5, 8.47, and 30.2 nm in
men compared with 32.5, 4.28, and 17.3 nM in women (23).
The average serum concentrations of ADT-G, 3a-diol-G, and
3B-diol-G, measured in women between the ages 20 and 80
yr are thus 86.6% (ADT-G), 50.5% (3a-diol-G), and 57.2%
(8B-diol-G), compared with those found in men of the same
age (20-80 yr; Table 1; Ref. 23). Although the metabolic
clearance rates of the three main androgen metabolites are
likely to show differences between men and women, an
estimate of the relative amount of total androgens in women
and men calculated on the basis of the sum of the serum
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Fic. 2. Illustration of the 50% parallel decrease in serum DHEA,
DHEA-S, and testosterone between the ages of 21 and 40 yr in normal
women (26).

concentrations of these three metabolites suggests that total
androgen production in women is more than two thirds, or
71%, of that observed in men (23, 27). Such an approach is
based on the knowledge that active androgens are inacti-
vated to glucuronide derivatives before their diffusion from
the intracellular compartment into the circulation where they
can be measured as ADT-G, 3a-diol-G, and 3B-diol-G.

Such data showing the presence of relatively high levels of
androgens in normal women strongly suggest that the an-
drogens play a major physiological role in women. The 44.5%
fall that occurs in serum DHEA from 20-30 yr of age to the
age of 40-50 yr in women could well explain the bone loss
that precedes menopause (27-30). Age-related bone loss has
been reported to begin in the fourth decade, and changes in
bone turnover have been found well before menopause (28—
30). In agreement with these findings, bone density was
lower at all sites examined in women classified as peri-
menopausal compared with premenopausal (31). In fact, the
changes in precursor androgen secretion by the adrenals
precede by 10-20 yr the detectable decrease in ovarian ste-
roidogenesis that occurs abruptly at menopause (23). In fact,
serum FSH increases in premenopausal women even before
serum E, shows a decline (32).

After the recognition that such a large proportion of an-
drogens and estrogens in men and women originate from
DHEA and DHEA-S of adrenal origin (25), we have studied
the serum concentration of a large series of androgens and
estrogens as well as their metabolites after percutaneous
administration of DHEA in 60- to 70-yr-old men and women
(27). We then observed that changes in serum DHEA within
the physiological range of young adult men and women led
only to small or nonsignificant changes in serum testoster-
one, DHT, or E,, whereas, on the other hand, the concen-
tration of the conjugated metabolites of DHT were markedly
increased (27). Such data clearly indicate the poor value of
measurements of serum androgens and estrogens as param-
eters of total androgenic and estrogenic activities in men and
women.

As well demonstrated in a long series of preclinical stud-
ies, supplementation with physiological amounts of exoge-
nous DHEA permits the biosynthesis of androgens (essen-
tially testosterone and DHT) and estrogens only in the target
tissues that contain the specific steroidogenic enzymes (25,
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33). The widespread tissue distribution of steroidogenic en-
zymes is illustrated in Table 2 (34). In fact, in 22 peripheral
tissues of the monkey, steroid sulfatase, 38-hydroxysteroid
dehydrogenase (HSD), androgenic 173-HSD, estrogenic 173-
HSD, aromatase, and 5a-reductase are all present in 114 of
132 (86%) possible sites. Genomic studies are in progress to
determine the identity of all families of steroidogenic en-
zymes in the various peripheral target tissues.

The active androgens and estrogens synthesized in pe-
ripheral target tissues exert their activity in the cells of origin,
and very little diffusion of the active sex steroids occurs, thus
resulting in very low levels in the circulation. In fact, the most
striking effects of DHEA administration are seen on the cir-
culating levels of the glucuronide derivatives of the metab-
olites of DHT, namely ADT-G, 3a-diol-G, and 3B-diol-G,
these metabolites being produced locally in the peripheral
intracrine tissues that possess the appropriate steroidogenic
enzymes to synthesize DHT from the adrenal precursors
DHEA and DHEA-S. These peripheral target tissues also
contain the steroid-inactivating enzymes required to metab-
olize DHT into inactive and more water-soluble conjugates,
especially glucuronide derivatives (25, 35). Such local bio-
synthesis and action of androgens in target tissues elimi-
nates the exposure of other tissues to androgens and thus
minimizes the risks of undesirable masculinizing or other
androgen-related side effects. The same applies to estrogens,
although we feel that a reliable parameter of total estrogen
secretion (comparable to the glucuronides for androgens) has
not yet been identified.

C. Androgens and bone physiology

1. Role of androgens and estrogens in bone physiology. A pre-
dominant role of androgens in bone physiology has already
been suggested (36). In fact, both testosterone and DHT in-
creased the transcription of « (I) procollagen mRNA in
osteoblast-like osteosarcoma cells (37). Treatment with DHT
has also been shown to stimulate endochondral bone devel-
opment in the orchiectomized rat (38). Androgens stimulate
osteoblast differentiation, these cells being known to contain
androgen receptors (AR; Refs. 39—-41). Moreover, bone min-
eral density measured in the lumbar spine, femoral trochan-
ter, and total body was increased more by estrogen plus
testosterone implants than by E, alone over a 24-month treat-
ment period in postmenopausal women (42). In agreement
with these data, biomarkers of bone formation were in-
creased compared with estrogen alone when methyltestos-
terone was added to estrogen (43).

The essential role of androgens in bone mineralization is
illustrated by the reduced bone mineral density in patients
with the androgen insensitivity syndrome (44-46). In such

TABLE 1. Comparison of serum androgen metabolites (20—80 yr of
age; nM)*

Men Women
ADT-G 37.5 32.5 (87%)
3a-Diol-G 85 4.3 (51%)
3B-Diol-G 30.2 17.3 (567%)
Total 76.2 54.1 (71%)

“ Data from Ref. 23.

Downloaded from edrv.endojournals.org on September 2, 2005


http://edrv.endojournals.org

Labrie et al. ® Role of Androgens and DHEA in Women

Endocrine Reviews, April 2003, 24(2):152-182 155

TaBLE 2. Distribution of intracrine steroidogenic enzymes in the monkey
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patients having an inactive AR, estrogens are unable to in-
crease bone mineral density (44, 45). Thus, at doses of es-
trogen able to restore bone mineral density in hypogonadal
women, estrogens could not exert a similar effect in patients
with androgen insensitivity. Such data suggest that both
estrogens and androgens are required to acquire normal
bone mineral density. In fact, a correlation has been found
between androgens and bone mineral density in premeno-
pausal women (31, 47).

In established osteoporosis, anabolic steroids have been
reported to help prevent bone loss (48). Moreover, androgen
therapy, as observed with nandrolone decanoate, increases
vertebral bone mineral density in postmenopausal women
(49). Similarly, sc E, and testosterone implants have been
found to be more efficient than oral estrogen in preventing
osteoporosis in postmenopausal women (50). Although the
difference has been attributed to the different routes of ad-
ministration of the estrogen, the cause of the difference could
well be the action of testosterone. Studies have convincingly
shown that androgen plus estrogen was more efficient than
estrogen in improving bone mineral density in postmeno-
pausal women (42, 43, 50, 52-55).

Although androgens are gaining increasing support be-
cause of their unique actions in postmenopausal women,
virilizing effects are observed with the use of supraphysi-
ological doses of testosterone (56, 57). The availability of a
compound such as DHEA, an inactive precursor that is trans-
formed into active androgens only in specific target tissues,
would be an important advantage over androgens exerting
systemic effects in all tissues possessing AR.

D. Other roles of androgens in women

1. General. It is likely that the androgens produced from
DHEA have other beneficial effects in postmenopausal

women. The detailed benefits of androgens added to ERT or
HRT have been described on general well-being, energy,
mood, and general quality of life (58, 59). Improvements in
the major psychological and psychosomatic symptoms,
namely irritability, nervousness, memory, and insomnia,
have been reported after addition of androgens to ERT (60).
In addition, androgenic compounds have been found to be
beneficial for the treatment of the mastalgia frequently
caused by HRT (61). In fact, ERT may result in severe breast
pain that may lead to discontinuation of therapy.

2. Libido and sexual satisfaction. Loss of libido and/or sexual
satisfaction are common in early postmenopause. The addi-
tion of androgens to HRT is known to have beneficial effects
on these problems (42, 53, 57, 58, 62—64). Moreover, a series
of studies have shown the beneficial effects of androgens on
libido in postmenopausal women (42, 65-67). In women who
have undergone oophorectomy and hysterectomy, transder-
mal testosterone improves sexual function and psychological
well-being (68). Similar findings have been observed with
DHEA administered to women with adrenal insufficiency,
this steroid being the most important precursor of androgens
in postmenopausal women (69). On the other hand, mood
and fatigue were significantly improved after DHEA re-
placement therapy in Addison’s disease (70).

3. Hot flashes. The addition of androgens has been found to
be effective in relieving hot flashes in women who had un-
satisfactory results with estrogen alone (71). Androgen ther-
apy is also successful in reducing hot flashes in hypogonadal
men (72). In agreement with its transformation into andro-
gens (27), DHEA has been found useful in reducing hot
flashes (73, 74). In fact, marked improvements in the vaso-
motor symptoms were observed in early postmenopausal
women who received 50 mg DHEA orally daily from an
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average score of 18.4 before treatment to a score of 4.5 at 6
months (74).

4. Cardiovascular function and lipids. There is also evidence that
androgens may improve endothelium-dependent and -in-
dependent vasodilation in postmenopausal women (75). In
fact, parenteral testosterone therapy improved brachial ar-
tery vasodilatation in postmenopausal women using long-
term estrogen therapy. It is also of great interest that the
addition of parenteral testosterone does not negate the fa-
vorable effects of estrogen on low-density lipoprotein cho-
lesterol (76).

II. DHEA Is Predominantly Converted into
Androgens in Women

A. Intracrinology

Man is unique, with some other primates, in having adre-
nals that secrete large amounts of the precursor steroids
DHEA and DHEA-S, which are converted into 4-dione and
then into potent androgens and/or estrogens in peripheral
tissues (Refs. 25, 77, and 78; Fig. 3). Adrenal secretion of
DHEA and DHEA-S increases during adrenarche in children
at the age of 6-8 yr, and maximal values of circulating
DHEA-S are reached between the ages of 20 and 30 yr.

Hnnﬁ

CRH
ANTERIOR
PITUITARY

[ LH | | ACTH |

ADRENAL

Estradiol (E;)
Testosterone

and a series of
other peripheral target tissues

Fic. 3. Schematic representation of the role of ovarian and adrenal
sources of sex steroids in premenopausal women. After menopause,
the secretion of estradiol by the ovaries ceases, and almost 100% of
sex steroids are made locally in peripheral target intracrine tissues.
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Thereafter, serum DHEA and DHEA-S levels decrease mark-
edly (Fig. 1; Refs. 18 and 20-22). In fact, as mentioned earlier,
at 70 yr of age, serum DHEA-S levels are decreased to ap-
proximately 20% of their peak values, whereas they can
decrease by 95% by the age of 85-90 yr (22). The 70-95%
reduction in the formation of DHEA and DHEA-S by the
adrenals during aging results in a dramatic reduction in the
formation of androgens and estrogens in peripheral target
tissues. Such a marked decrease in the formation of sex
steroids in peripheral tissues could well be involved in the
pathogenesis of diseases associated with aging.

It is thus remarkable that man, in addition to possessing
very sophisticated endocrine and paracrine systems, has
largely vested in sex steroid formation in peripheral tissues
(25,27,77,78). In fact, although the ovaries and testes are the
exclusive sources of androgens and estrogens in lower mam-
mals, the situation is very different in man and higher pri-
mates, where active sex steroids are in large part or wholly
synthesized locally in peripheral tissues, thus providing tar-
get tissues with controls that adjust the formation and me-
tabolism of sex steroids to local requirements. This situation
is well illustrated in women by the absence of significant
difference in the intracellular levels of E, in breast cancer
tissue between premenopausal and postmenopausal women
(79). Because the postmenopausal ovary does not secrete
estrogens, intratumoral E, is necessarily made from adrenal
precursor steroids (25).

Transformation of the adrenal precursor steroids DHEA-S
and DHEA into androgens and/or estrogens in peripheral
target tissues depends upon the level of expression of the
various steroidogenic and metabolizing enzymes in each of
these tissues. This sector of endocrinology that focuses on the
intracellular hormone formation and action has been called
intracrinology (Refs. 25 and 78; Fig. 4). This situation of a high
secretion rate of adrenal precursor sex steroids in men and
women is thus completely different from all animal models
used in the laboratory, namely rats, mice, guinea pigs, and
all others (except monkeys) in which the secretion of sex
steroids takes place exclusively in the gonads (77, 80). A
major problem that is at least partially responsible for the
delayed progress in the recognition of the formation of a
major proportion of sex steroids in peripheral tissues or
intracrinology is the fact that the animal models usually used
in the laboratory do not secrete significant amounts of ad-
renal precursor sex steroids, thus focusing all attention on the
testes and ovaries as the exclusive sources of androgens and
estrogens. The term intracrinology was thus coined (78) to
describe the synthesis of active steroids in peripheral target
tissues in which the action is exerted in the same cells where
synthesis takes place without release of the active steroids in
the extracellular space and general circulation (25).

Proof of the role of estrogen formation in peripheral in-
tracrine tissues is particularly well illustrated in women by
the important benefits on breast cancer observed in post-
menopausal women treated by a series of aromatase inhib-
itors (81). Most convincingly, because the postmenopausal
ovaries do not secrete estrogens, the recent observation that
administration of the antiestrogen raloxifene for only 3 yr in
postmenopausal women led to a 76% decrease in the inci-
dence of breast cancer (82) is a clear demonstration of the role
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ENDOCRINE

Fi1c. 4. Schematic representation of endocrine, para-
crine, autocrine, and intracrine secretion. Classically,
endocrine activity includes the hormones secreted in
specialized glands, called endocrine glands, for release
into the general circulation and transport to distant
target cells. On the other hand, hormones released
from one cell can influence neighboring cells (para-
crine activity) or can exert a positive or negative action
on the cell of origin (autocrine activity). Intracrine
activity describes the formation of active hormones
that exert their action in the same cells in which syn-
thesis took place without release into the pericellular
compartment. [Reprinted with permission from F. La-
brie: Mol Cell Endocrinol 78:C113—-C118, 1991 (25).]

Endocrine Reviews, April 2003, 24(2):152-182 157

PARACRINE

AUTOCRINE INTRACRINE

DHEA

17B-HSD
DHEA-S 5~ DIOL-S
Steroid
sulfatase
DHEA
3B-HSD1
F1G. 5. Human steroidogenic enzymes in peripheral in- So-reductase-1

tracrine tissues.

Aromatase l

Steroid

sulfatase

of extraovarian estrogens in the development and growth of
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B. Structure of the human steroidogenic enzymes

As mentioned above, transformation of DHEA and
DHEA-S into active androgens and/or estrogens in periph-
eral target tissues depends on the level of expression of the
various steroidogenic and metabolizing enzymes in each cell
type. Elucidation of the structure of most of the tissue-
specific genes that encode the steroidogenic enzymes re-
sponsible for the transformation of DHEA and DHEA-S into
androgens and/or estrogens has permitted rapid progress in
this area (Refs. 33 and 83-86; Fig. 5). The major importance
of DHEA and DHEA-S is illustrated by the finding that
approximately 50% of total androgens in the prostate of adult
men derive from these adrenal precursor steroids (77, 87, 88).
Our best estimate of the intracrine formation of estrogens in
peripheral tissues in women is in the order of 75% before
menopause and close to 100% after menopause (25). Al-
though testosterone of ovarian and adrenal origin can act
directly in peripheral tissues, its transformation into estro-
gens requires the action of the peripheral or intracrine ste-
roidogenic enzymes, especially aromatase (89).

Because the molecular structure of most of the key non-

#
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DHT
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P-450-dependent enzymes required for sex steroid formation
had not been elucidated, and knowing that local formation
of sex steroids is most likely to play a major role in the control
of activity of both normal and tumoral hormone-sensitive
tissues, an important proportion of our research program
and that of other groups has been devoted to this exciting and
therapeutically promising area (33, 35, 84, 90-92). The syn-
thesis from DHEA of the most potent natural androgen,
DHT, and of the most potent natural estrogen, E,, involves
several enzymatic activities, namely 33-HSD, 178-HSD, 5a-
reductase, and/or aromatase (Fig. 5).

1. Human 3B-HSD isoenzymes and their genes. Despite its es-
sential role in the biosynthesis of all classes of hormonal
steroids, the structure of the 38-HSD/A°-A* -isomerase gene
family, hereafter called 35-HSD, was only elucidated rela-
tively recently (84, 93-96). The membrane-bound enzyme
3B-HSD catalyzes an essential step in the transformation of
all 5-pregnen-3-ol and 5-androsten-33-ol steroids into the
corresponding A*-3-keto-steroids, namely progesterone as
well as the precursors of all androgens, estrogens, glucocor-
ticoids, and mineralocorticoids.

Experiments performed using microsomes and purified
enzymes show that 33-HSD can catalyze the interconversion
of 3B-hydroxy- and 3-keto-5a-androstane steroids (97). On
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the other hand, experiments performed under more physi-
ological conditions (i.e., in intact transfected cells in culture
without added cofactor) indicate that 33-HSD catalyzes al-
most exclusively the oxidation of 3-hydroxy- into 3-keto-
5a-androstane steroids (98). The reverse reductive reaction is
catalyzed by another enzyme, namely 3(a—p)-hydroxy-
steroid epimerase [3(a—f)-HSE; Refs. 98 and 99] and type 7
17B-HSD (our unpublished data).

3B-HSD is found not only in the classical steroidogenic
tissues (placenta, adrenal cortex, ovary, and testis) but also
in several peripheral tissues, including the skin, adipose tis-
sue, breast, lung, endometrium, prostate, liver, kidney, ep-
ididymis, and brain (34, 84, 91, 100), thus catalyzing the first
step in the intracrine transformation of DHEA into 4-dione,
the precursor of both androgens and estrogens. The existence
of multiple members of the 33-HSD gene family offers the
unique possibility of tissue- and/or cell-specific expression
of this enzymatic activity.

After purification of 38-HSD from human placenta and
development of antibodies against the enzyme in rabbits
(101), we have isolated and characterized a first 38-HSD
c¢DNA type (93) and its corresponding gene (94). The second
3B-HSD cDNA type, which corresponds to the almost ex-
clusive mRNA species expressed in the adrenals and gonads,
was chronologically designated human type 2 38-HSD (95).
The structure of the corresponding human type 2 38-HSD
gene has also been elucidated (96). The human 38-HSD genes
corresponding to human cDNAs type 1 and 2 contain four
exons and three introns within a total length of 7.7-7.8 kb.
These genes were assigned by in situ hybridization to the
p13.1 region of chromosome 1 and are closely linked to
D1S514 located at 1-2 ¢cM of the centromeric marker D175
(102).

We have observed that mutations in the type 2 33-HSD
gene are responsible for classic 38-HSD deficiency, a form of
congenital adrenal hyperplasia that impairs steroidogenesis
in both the adrenals and gonads (103-105). However, the
absence of mutations in the type 1 gene provided the long-
awaited molecular explanation for the persistence of periph-
eral steroidogenesis in these 33-HSD type 2-deficient pa-
tients, thus demonstrating the importance of peripheral sex
steroid formation or intracrinology.

2. Human 17B-HSDs. The 17B3-HSDs are responsible for the
formation and inactivation of all active androgens and es-
trogens. As discussed above for 38-HSD, until recently,
17B-HSDs as well as almost all other dehydrogenases were
considered to be reversible enzymes that catalyze the inter-
conversion of substrates and products, mainly because the
enzymatic activity was first characterized using tissue ho-
mogenates, subfractions, or purified proteins with added
oxidized (NAD+, NADP+) or reduced (NADH, NADPH)
cofactors. These exogenous cofactors drive the reaction in the
oxidative or reductive direction depending on their oxidized
or reduced state, respectively. However, using a more phys-
iologically relevant method of enzymatic activity analysis,
namely intact transfected cells in culture without the addi-
tion of exogenous cofactors, the transfected enzyme catalyzes
the reaction in a unidirectional manner (85, 98, 99, 106, 107).
These findings agree with the isolation of multiple types of
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17B-HSDs in which approximately half catalyze the reduc-
tive reaction (types 1, 3, 5, and 7) and half catalyze the
oxidative reaction (types 2, 4, 6, and 8).

a. Type 1 17B-HSD. The molecular structure of the human
type 1 17B-HSD gene and mRNA, which encode a predicted
protein of 327 amino acids, was the first of the 173-HSDs to
be elucidated (Refs. 108-111; Fig. 6). This enzyme is a mem-
ber of the short-chain alcohol dehydrogenase superfamily.
The type 1 17B-HSD enzyme is a cytosolic protein that exists
in a homodimeric form that catalyzes predominantly the
interconversion of estrone (E;) to E, using NADP(H) as co-
factor (112, 113).

To perform the structure-function analysis of type 1 17p-
HSD, the protein was rapidly purified from the placenta,
thus yielding a highly active preparation (113, 114). The
protein was also overproduced in baculovirus, and crystals
were obtained (115). This crystallization led to the elucida-
tion of the three-dimensional structure of human type 1
17B8-HSD (116), thus achieving the first x-ray structure de-
termination of a mammalian steroidogenic enzyme. The
structure of type 1 178-HSD from human placenta was de-
termined at 2.2-A resolution by a combination of isomor-
phous replacement (with a single mercury derivative) and
molecular replacement techniques.

b. Type 2 17B-HSD. The structure of a cDNA encoding a
second type of 173-HSD cDNA was then reported (117, 118).
This cDNA encodes a predicted protein of 387 amino acids
with a molecular weight of 42,782 (Fig. 6). This protein is
most likely associated with the membranes of the endoplas-
mic reticulum. The enzyme catalyzes the conversion of E, to
E,, testosterone to 4-dione, and 5-diol to DHEA. This en-
zyme, chronologically designated type 2 178-HSD, is also a
member of the short-chain alcohol dehydrogenase super-
family, but it shares only about 20% sequence identity with
the type 1 178-HSD cytoplasmic enzyme (109). This enzyme
uses NAD(H) as a cofactor (117) and is less specific than type
1 17B-HSD, both estrogens and androgens acting as sub-
strates. This enzyme inactivates the estrogens and androgens
made after the reductive action of type 2, 3, and 5 173-HSDs.

c. Type 3 17B3-HSD. A third type of human 173-HSD cDNA
encoding a predicted protein of 310 amino acids with a mo-
lecular weight of 34,513 was then characterized (119). Type
3 17B-HSD, a microsomal isozyme, using NADP(H) as a
cofactor, is expressed predominantly in the testes, where it
synthesizes testosterone from 4-dione. This enzyme, which
shares 23% sequence identity with the two other 175-HSD
enzymes, is the site of the mutations responsible for male
pseudohermaphroditism resulting from 175-HSD deficiency
(119).

d. Type 417B-HSD. Human type 4 178-HSD is a 736-amino-
acid protein of molecular mass 80 kDa that can transform E,
to E; and 5-diol to DHEA (120, 121). The human type 4
17B8-HSD mRNA is expressed in virtually all human tissues
examined by Northern blot, including the liver, heart, pros-
tate, testis, lung, skeletal muscle, kidney, pancreas, thymus,
ovary, intestine, placenta, and several human breast cancer
cell lines. This enzyme possibly plays a role in the inactiva-
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[Reproduced by permission of the Society for Endocrinology (33).]

tion of estrogens in a large series of peripheral tissues, al-
though its activity is low and its importance in steroid for-
mation in the human remains to be established. Indeed,
mutations in type 4 17p-HSD gene lead to a fatal form of
Zellweger syndrome (122).

e. Type 5 17B-HSD. Although type 3 178-HSD synthesizes
testosterone from 4-dione in the Leydig cells of the testes,
thus providing approximately 50% of the total amount of
androgens in men, the same enzymatic reaction is catalyzed
in the peripheral target tissues in both men and women as
well as in the ovary by a different enzyme, namely type 5
17B-HSD (106). This enzyme is highly homologous with
types 1 and 3 3a-HSD as well as 20a-HSD (106) and thus
belongs to the aldo-keto reductase family.

In the postmenopausal ovary, hypertrophied stromal cells
are localized mainly at the periphery and hilus (123). These
stromal cells contain both 38-HSD and type 5 178-HSD, thus
permitting the transformation of DHEA into 4-dione and
then into testosterone. The amount of stromal hyperplasia in
postmenopausal ovaries is correlated with the ovarian vein
levels of 4-dione and testosterone (124). These hyperplastic
stromal cells are thus responsible for the synthesis of 4-dione
and testosterone in the postmenopausal ovary.

Type 5 175-HSD is not only expressed in the ovary but is
also present in a large series of peripheral tissues including
the mammary gland. The epithelium lining the acini and

ducts of the mammary gland is composed of two layers, an
inner epithelial layer and an outer discontinuous layer of
myoepithelial cells. By immunocytochemistry, 38-HSD is
seen in the epithelial cells of acini and ducts as well as in
stromal fibroblasts (Fig. 7A). Immunostaining is also ob-
served in the walls of blood vessels, including the endothelial
cells. In the positive cells, the labeling is mainly cytoplasmic.
Nosignificant labeling could be detected in the myoepithelial
cells. As shown in Fig. 7B, immunostaining for type 5 173-
HSD gives results almost superimposable to those obtained
for 38-HSD, the cytoplasmic labeling being observed in both
epithelial and stromal cells and blood vessel walls (125).
Studies performed at the electron microscopic level revealed
that in sections stained for 38-HSD or type 5 173-HSD, la-
beling was not associated with any specific membrane-
bound organelles in the different reactive cell types (126).

f. Type 6 17-HSD. Using a rat prostate cDNA obtained by
expression cloning, Biswas and Russell (127) have isolated
cDNA clones that metabolize 3a-diol. Among the many
clones obtained, one type, named type 6 178-HSD, catalyzes
selectively the oxidation of 3a-diol to androsterone. The
transformation of other C19-steroids, namely DHT to an-
drostanedione and testosterone to 4-dione, also occurs but at
an approximately 50- to 100-fold lower rate.

Type 6 17B8-HSD shares 65% homology with rat type 1
retinol dehydrogenase and thus belongs to the retinol de-
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Fig. 7. Human mammary gland im-
munostained for 38-HSD (A) and type 5
17B-HSD (B). Staining can be observed
in the secretory epithelial cells of acini
(A). Stromal cells (arrows) and capillar-
ies (arrowheads) are also labeled. Mag-
nification, X430.

hydrogenase family. The human counterpart has not yet
been described, and its role remains to be established.

g Type 7 17B-HSD. Type 7 17B-HSD was first cloned from
a rat corpus luteum cDNA library and was identified as
prolactin receptor-associated protein (PRAP; Ref. 128). With
the use of expression cloning of a mouse mammary epithelial
(HC11) cell cDNA library, a clone that shares 89% identity
with rat PRAP and catalyzes selectively the transformation
of E; to E, has been isolated (129). After transfection into
HEK-293 cells, Nokelainen ef al. (129) also found that rat
PRAP catalyzes efficiently and selectively the transformation
of E; to E,, whereas the transformation of C19 steroids was
much weaker.

Human type 7 178-HSD cDNA is 1.5-kb long and encodes
a protein of 37 kDa or 341 amino acids (130). With the use of
RT-PCR, this enzyme is detected in the ovary, breast, pla-
centa, testis, prostate, and liver. Comparison with other 173-
HSDs indicates that it shares less than 20% identity, a typical
percentage for the other members of the 173-HSD family.
The human type 7 178-HSD gene spans 21.8 kb and consists
of nine exons and eight introns. The gene is assigned to
human chromosome bands 10p11.2 (130). It is noteworthy
that type 5 178-HSD is also mapped to human chromosome
10 (bands 10p15—14). The importance of this enzyme re-
mains to be established.

h. Type 8 17B-HSD. Type 8 17B-HSD is also known as the
product of the Ke6 gene, which is found in the HLA region
(131). This area is well known to contain genes encoding the
human major histocompatibility complex. This complex is
thought to be involved in polycystic kidney disease because
aberrant gene expression has been found in two different
models of polycystic kidney disease mice (132). Recently,
Fomitcheva et al. (133) have found that the overproduced
protein fused with GST catalyzes efficiently the transforma-
tion of E, to E;. The transformation of testosterone to 4-dione
is about 25% of that of E, into E;. Using HEK-293 cells stably
transfected with human type 8 175-HSD, we have shown
recently that this enzyme selectively converts E, to E,, the
transformation of E; as well as of androgen substrates being
negligible (134).

3. Human 5a-reductase isoenzymes. The enzyme 5a-reductase
catalyzes the 5a-reduction of 4-dione, testosterone, and other
4-ene-3-keto-steroids to the corresponding 5a-dihydro-3-
keto-steroids. The best known role of this enzyme is the
transformation of testosterone into DHT, the most potent
androgen, which is responsible for the differentiation of the
male external genitalia and prostate as well as virilization at
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puberty. The major impact of 5a-reductase in men, however,
is its role in prostate cancer and benign prostatic hyperplasia.
Two types of human steroid 5a-reductases, chronologically
identified as type 1 and type 2, were isolated from human
prostatic cDNA libraries (135, 136). The structure of the hu-
man type 1 Sa-reductase gene was first elucidated (137). This
gene is not responsible for 5a-reductase deficiency and is
relatively insensitive to the inhibitor finasteride (136). Type 2
5a-reductase, on the other hand, is the isozyme responsible for
male pseudohermaphroditism from 5a-reductase deficiency
and is sensitive to finasteride (136, 138).

Considering the crucial role of type 2 5a-reductase, we
have elucidated the structure of its corresponding gene (83).
The type 2 5a-reductase gene contains five exons and four
introns and shows splicing sites identical to those of the type
1 gene. Its coding region shares 57% homology with that of
the type 1 5a-reductase gene. Type 1 5a-reductase is the
predominant form expressed in human skin (139).

C. Women produce about two thirds of the androgens
synthesized in men

1. Decline in serum androgen precursors and metabolites occurs
well before menopause. To gain a better knowledge of the role
of DHEA and DHEA-S transformation in both men and
women, we have analyzed the serum levels of 18 conjugated
C21- and C19-steroids (23). The data obtained show a dra-
matic decline in the circulating levels of DHEA, DHEA-S,
5-diol, and 5-diol fatty acid esters between the ages of 20 and
80 yr (Fig. 1). As mentioned earlier, in the 50- to 60-yr-old
group, serum DHEA has already decreased by 70% from its
20- to 30-yr-old peak values in women (Fig. 1). It should be
added that between the ages of 21 and 40 yr, mean serum
testosterone in normal women decreases from approxi-
mately 1.3 to 0.61 nm (Ref. 26; Fig. 2). A parallel decrease is
observed for serum DHEA and DHEA-S, thus suggesting the
role of DHEA in the progressive decline in serum testoster-
one between the ages of 21 and 40 yr in normal women.
The serum concentrations of the conjugated metabolites of
DHT, namely ADT-G, 3a-diol-G, and 33-diol-G, are the most
reliable parameters of the total androgen pool in women,
whereas serum testosterone is mostly a measure of direct
secretion of testosterone by the ovaries and/or adrenals. In
fact, although the vast majority of testosterone and DHT is
synthesized in the peripheral tissues in women, only a small
proportion, estimated at 10-15% of the intracellular content
of these androgens, diffuses out of the intracellular compart-
ment without prior metabolism and can be measured as
active androgen in the circulation. This is because testoster-
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one and DHT, instead of being almost quantitatively released
in the circulation, are rapidly glucuronidated into ADT-G,
3a-diol-G, and 3B-diol-G (Fig. 8). Because the individual
glucuronosyltransferases responsible for the inactivation of
androgens in the human mammary gland have not yet been
identified, the human prostate is used as an example of the
types of glucuronosyltransferases involved (140, 141). These
metabolites are much more water soluble than DHT and thus
easily diffuse into the general circulation where they can be
measured en route for their elimination mainly by the kid-
neys (Figs. 9 and 10). The serum concentration of the above-
indicated conjugated androgen metabolites decreases by

Androstenedione =———;

Androstanedione =——

Fic. 8. Enzymes involved in the peripheral
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47.5-72.7% between the 20- to 30- and 70- to 80-yr age groups
in women, thus suggesting a parallel decrease in the total
androgen pool with age (23).

As assessed by measurement of the circulating levels of
these conjugated metabolites of DHT, it can be estimated that
women produce approximately 71% or two thirds of the total
androgens synthesized in men (Table 1); in women, most of
these androgens originate from the transformation of DHEA
and DHEA-S into testosterone and DHT in peripheral intra-
crine tissues. Such an estimate of the androgen pools in men
and women based on the serum concentration of androgen
metabolites can be influenced by possible differences in the
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metabolic clearance rates of these metabolites in men and
women.

2. Plasma sex steroid levels are not a valid parameter of the in-
tracellular situation in women. Proof that changes of the in-
tracellular concentration of sex steroids cannot be estimated
by the measurement of testosterone and E, in the circulation
has been obtained in a study performed in postmenopausal
women (23). This study analyzed in detail the serum con-
centrations of the active androgens and estrogens, as well as
a series of free and conjugated forms of their precursors and
metabolites, after daily application for 2 wk of a 10-ml 20%
DHEA solution on the skin to avoid first passage of DHEA
through the liver.

After daily administration of a single dose of DHEA per-
cutaneously, serum DHEA, DHEA-S, and DHEA fatty acid
esters increased approximately 175%, 130%, and 250% above
control, respectively (Fig. 11), whereas serum 4-dione and
testosterone increased by about 100% and 50% over control,
respectively (Fig. 12). In parallel with the changes in serum
DHEA, DHEA-S, and DHEA fatty acids, the most important
effects (Fig. 13) were seen on the glucuronidated metabolites
of ADT, 3a-diol, and 3B-diol. In fact, treatment with DHEA
caused an increase in serum ADT-G, 3a-diol-G, and 38-
diol-G of approximately 125% (Fig. 13A), 140% (Fig. 13B),
and 120% (Fig. 13C), respectively. No significant effect was
observed on serum E,, E,, or DHT.

The present data show that elevations in serum DHEA
within the physiological range found in young adult women

v
TESTO-G
A

y L 4

E>-G I3 DHT-G
30-DIOL-G ADT-G

led to only small or even no significant changes in serum
testosterone, DHT, or E,, whereas, by contrast, the concen-
trations of the conjugated metabolites of DHT are markedly
elevated, in parallel with the changes in serum DHEA,
DHEA-S, and 5-diol. Such data obtained in normal post-
menopausal women offer unique proof that the serum levels
of androgens and estrogens are poor indicators of total an-
drogenic and estrogenic activities in women. In fact, as men-
tioned earlier, serum testosterone and E, reflect almost ex-
clusively the contribution of the small and direct sex steroid
secretion by the ovaries and/or adrenals.

The 50% increase in serum testosterone of approximately
0.8 nM (from 1.5-2.3 nMm) observed in women during DHEA
treatment corresponds to a much larger increase of approx-
imately 20 nm in serum DHEA. These data are in agreement
with the information obtained in men after medical or sur-
gical castration in which the serum levels of testosterone
decreased from 15 nm to about 1.5 nm after elimination of
testicular androgens. Thus, after castration, the serum levels
of testosterone in 60- to 70-yr-old men became comparable to
those observed in intact postmenopausal women. The 1.5 nm
serum testosterone remaining after castration in men origi-
nates essentially from adrenal DHEA (77, 87). The present
data thus offer an independent measure of the amount of
testosterone that diffuses into the circulation from the an-
drogens synthesized from DHEA and DHEA-S in peripheral
intracrine tissues (25).

In arecent study, daily oral administration of 50 mg DHEA

Downloaded from edrv.endojournals.org on September 2, 2005


http://edrv.endojournals.org

Labrie et al. ® Role of Androgens and DHEA in Women

Endocrine Reviews, April 2003, 24(2):152-182 163

DHEA
CREAM C
30 2000 16
25—
— 1500 = 12
£ 20 3 ©
Fic. 11. Effect of daily percutaneous administration g £ g
of a 10 ml 20% solution of DHEA in 50% ethanol-50% c 15 £ 10004 ~ g
propylene glycol for 2 wk in 60- to 70-yr-old women Z » oy
on serum levels of DHEA (A), DHEA-S (B), and I-:::J 10_% E |.<|:|
DHEA-fatty acid esters (C; Ref. 26). a E 500 g 4-
5
0 WOMEN 0 0
I IIIIIII IIIIIIII I IIIIIII IIIIIIII l|||||||| Il”llll
0 10 20 30 0 10 20 30 0 10 20 30
TIME (days)

A DHEA B

CREAM
6 3
5_
3 4 sa{|d o
£ £
£ 3 £
I < o .
o =
T 24 @ 14
L g -
1_
0 WOMEN 0
Illlllll |IIII|II IIIIlIII |IIII|II
0 10 20 30 0 10 20 30
TIME (days)

Fic. 12. Effect of daily percutaneous administration of 10 ml 20%
solution of DHEA in 50% ethanol-50% propylene glycol for 2 wk in 60-
to 70-yr-old women on serum levels of 4-dione (A) and testosterone (B;
Ref. 26).

A cream B C

60— 6] 16
50
= = 12
£ 40 3 4 3
S £ £
5 < < g
<% 9 ¢ s
2,0 5[ 3
[=) 20— T 24 o
< & & 4
10 ® ®
0 WOMEN 0- 0~
llrlllll ]lllll” I ||l|||| llllllll I Ill‘lll IIIIlIII
0 10 20 30 0 10 20 30 0 10 20 30

TIME (days)

Fic. 13. Effect of daily percutaneous administration of 10 ml 20%
solution of DHEA in 50% ethanol-50% propylene glycol for 2 wk in 60-
to 70-yr-old women on serum levels of ADT-G (A), 3a-diol-G (B), and
3B-diol-G (C; Ref. 26).

had no significant effect on serum testosterone or DHT,
whereas DHEA and ADT-G were increased to a similar ex-
tent (80-90%; Ref. 142). In another study, predosing serum
levels of DHEA-S in postmenopausal women were increased

from 0.55 ug/ml to about 1.4 pg/ml (143) after daily oral
administration of 25 mg DHEA for 6 months. Serum DHEA
and testosterone levels, however, measured 23 h after the last
administration of DHEA, were not changed significantly.
Similarly, the 50-mg/d oral dose of DHEA was found to lead
to serum androgen levels in the premenopausal range (144).

Our data obtained after percutaneous administration of
DHEA in normal postmenopausal women offer the first di-
rect analysis of the correlation between the serum levels of
DHEA and DHEA-S with the serum concentration of active
androgens and estrogens and their corresponding glucu-
ronidated and sulfated metabolites. It can be concluded that
measurements of serum testosterone and E, mainly reflect
ovarian and/or adrenal steroid secretion, whereas the major
contribution of the adrenals is not accurately represented in
the circulating levels of active sex steroids. The present data
clearly demonstrate that DHEA and DHEA-S are converted
in a series of intracrine tissues into the active androgens
and/or estrogens that exert their biological effects at their site
of synthesis. These steroids are then metabolized in the same
cells into inactive glucuronidated and sulfated metabolites,
which finally diffuse in the extracellular compartment and
can be measured in the circulation. Measurement of the con-
jugated metabolites of androgens is the only approach that
permits an accurate estimate of the total androgen pool in
women. Itis likely that a similar situation exists for estrogens,
although a precise evaluation of the pharmacokinetics of
estrogen metabolism and identification of their metabolites
remains to be completed.

3. Contribution of the postmenopausal ovary to serum 4-dione and
testosterone. It is well recognized that the postmenopausal
ovary is a steroid-secreting gland (145, 146). In fact, the post-
menopausal ovary is well known to secrete testosterone, and
most authors agree that it also secretes some 4-dione (147,
148). In fact, a correlation has been observed between the
degree of ovarian stromal hyperplasia and the secretion of
androgens by the ovary (124, 149). Moreover, lowering se-
rum gonadotropins with a GnRH agonist has been shown to
result in decreased serum androgen levels, thus indicating
that the stromal cells of the ovary are under gonadotropin
control (150, 151). In agreement with these data, receptors for
LH and FSH have been described in the ovarian stromal cells.
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It should be mentioned that Couzinet et al. (152) have re-
ported that the postmenopausal ovary does not contribute
significantly to serum androgen levels. This observation is
unique and, if confirmed, will bring even more emphasis on
the importance of the adrenals in sex steroid physiology after
menopause.

Despite the above-described limitations of the interpreta-
tion of serum levels of sex steroids, it is of interest to provide
the best available estimate of the contribution of the ovaries
and adrenals to the serum levels of 4-dione and testosterone.
The majority of studies show declining levels of serum tes-
tosterone and 4-dione with age (149, 153-156). Testosterone
concentration in the ovarian venous blood is 15 times higher
than in peripheral blood (147). In fact, the production of
testosterone by the ovary has been estimated to decrease
from 250 to 180 pg/d after menopause (157).

As illustrated in Fig. 14A, although the ovaries and adre-
nals contribute about equally to the serum levels of 4-dione
in premenopausal women (158, 159), the contribution of the
ovaries decreases to about 20% after menopause (158, 159),
despite a progressive fall in the contribution of the adrenals
through transformation of declining amounts of DHEA into
4-dione, thus leading to lower total serum concentration of
4-dione after menopause. Similarly, the serum levels of tes-
tosterone in premenopausal women originate in approxi-
mately equal amounts from the ovaries and adrenals (Refs.
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158 and 159; Fig. 15). Peripheral serum testosterone decreases
by 50% after ovariectomy in postmenopausal women, thus
indicating that the approximately equal contribution of the
ovaries and adrenals to serum testosterone remains after
menopause. In another study, human chorionic gonadotro-
phin stimulation and dexamethasone suppression tests in
postmenopausal women have suggested that the ovary con-
tributes about 50% of testosterone and 30% of 4-dione in the
peripheral circulation (160).

To take into account the low degree of diffusion of the
active androgens synthesized intracellularly from adrenal
DHEA in peripheral target tissues, we estimate that the se-
rum levels of testosterone should be multiplied by about 10
to compare with the testosterone of direct ovarian and ad-
renal origins. In other words, as mentioned above, only about
10% of intracellular testosterone synthesized from DHEA
leaks into the general circulation. The remaining 90% of
locally produced testosterone is mostly converted locally
into DHT, which is then converted into ADT-G, 3a-diol-G,
and 3B-diol-G (Figs. 8—10). Some testosterone and DHT are
also glucuronidated and are found in the circulation as
Testo-G and DHT-G. One can thus estimate, as illustrated
schematically in Fig. 16, that after menopause the contribu-
tion of the ovaries to the intracellular concentration of tes-
tosterone is only about 10%. This estimate is based on the
observation that serum levels of testosterone are reduced by
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Fic. 14. Contribution of the ovaries 4-dione
and adrenals to the serum levels of 4- DHEA
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women, respectively (158, 159). 1.04
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FiG. 16. Schematic representation of the contribution of the ovaries
and adrenals to the serum and intratissular concentrations of tes-
tosterone. DHEA is transformed in a series of peripheral intracrine
tissues into testosterone, which acts locally on the AR directly or after
transformation into the more active androgen DHT. Only a small
fraction (estimated at 10%) of the active androgens diffuse into the
extracellular space and reach the general circulation, whereas the
majority of testosterone and DHT is inactivated by glucuronosyl-
transferases and released as ADT-G, 3a-diol-G, 33-diol-G, Testo-G,
and DHT-G. These are estimates based on the steroid measurements
performed in prostatic tissue of intact and castrated men (77, 80).

90% from 15.0 nMm to about 1.5 nMm after castration in men,
whereas the intraprostatic concentration of DHT is reduced
only by 50% to about 2.5 ng/g tissue or about 7.5 nm (77, 80).
Thus, whereas 7.5 nM intratissular DHT of testicular origin
corresponds to 13.5 nM serum testosterone, 1.5 nMm serum
testosterone of adrenal origin corresponds to the same 7.5 nm
intratissular DHT, thus requiring a multiplication factor of 9
to compensate for the poor diffusion of testosterone synthe-
sized intracellularly from DHEA compared with the efficacy
of entry of circulating testosterone in the prostatic tissue.
Such calculations are in agreement with other data showing
that serum ADT-G levels reflect essentially adrenal androgen
secretion (161). In fact, Giagulli et al. (161) have concluded
that DHEA-S accounts for 70-80% of serum ADT-G levels.

II1. Androgens Inhibit Breast Cancer

Androgens have been suspected for many decades of be-
ing estrogen antagonists and have been used to treat or
prevent estrogen-sensitive mammary cancer (162, 163).

A. Clinical data

Estrogens have long been known to play a predominant
role in the development and growth of human breast cancer
(164-166). On the other hand, well recognized observations
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have shown that androgens such as testosterone propionate
(162, 167-169), fluoxymesterone (170, 171), and calusterone
(172) used in the adjuvant therapy of breast cancer have an
efficacy comparable to that achieved with other types of
endocrine manipulations (165, 169, 173, 174).

Most importantly, a higher response rate and a longer time
to disease progression have been observed when androgens
were combined with an antiestrogen, compared with an an-
tiestrogen alone (171, 175). The benefits of combined treat-
ment with fluoxymesterone and tamoxifen vs. tamoxifen
alone were observed in postmenopausal women with met-
astatic breast cancer (175), both in terms of response rate and
time to progression of disease.

As summarized later, such additive inhibitory effects of an
antiestrogen and androgen on breast cancer have been
clearly demonstrated in a series of experimental models. The
above-mentioned clinical data are also well supported by the
observation of a synergistic effect of DHEA and of the pure
antiestrogen EM-800 on prevention of the development of
dimethylbenz(a)anthracene (DMBA)-induced mammary tu-
mors in the rat (176). Moreover, the almost exclusive andro-
genic component in the action of DHEA on the histomor-
phology and structure of the rat mammary gland has
recently been shown (177), thus supporting such an inhibi-
tory effect of DHEA.

It should also be mentioned that androgens have been
shown to induce an objective remission after failure of an-
tiestrogen therapy and hypophysectomy. These clinical ob-
servations indicate that the benefits obtained with androgen
therapy in breast cancer cannot be due solely to a suppression
of pituitary gonadotropin secretion but must result, at least
in part, from a direct effect on tumor growth in women. The
role of androgens as direct inhibitors of breast cancer growth
is well supported by the presence of AR in a large proportion
of human breast cancers (178-181). In fact, in primary breast
cancer, AR has been found in 54% of premenopausal and 48%
of postmenopausal patients (180, 182). The presence of AR
has also been described in MCEF-7 cells (183, 184).

The overwhelming clinical evidence for tumor regression
observed in 20-50% of pre- and postmenopausal breast can-
cer patients treated with various androgens (173) favors the
view that naturally occurring androgens might constitute an
as yet overlooked, direct inhibitory control of mammary
cancer cell growth. It is thus reasonable to suggest that an
imbalance between androgenic and estrogenic influences
could modify the overall growth rate of breast tumors in
much the same way as that suggested for progestins in es-
trogen target tissues (185). There is also genetic evidence in
agreement with a protective role of androgens against breast
cancer (186, 187). Interestingly, the observation that an in-
creased response rate can be obtained by combining andro-
gens and an antiestrogen therapy in breast cancer patients
(171,175) is in agreement with our observations summarized
later that the mechanisms of the inhibition exerted by the two
types of agents are different, whereas their effects, at least in
part, are additive.

In this context, it has been found that Western women
having a low excretion of adrenal androgenic metabolites
respond more poorly to endocrine therapy and have a
shorter survival time (188-190). Possibly because of the small
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number of cancer cases in many studies, the methodology
used, the low predictive value of measurements of serum sex
steroid levels, and the association in case-control studies
between serum androgen levels and breast cancer risk have
led to contradictory data. Thus, subnormal levels of serum
androgens have been found in women with increased risk of
breast cancer (191-193), whereas opposite data have also
been reported (194-197).

It is of interest that suppression of androgens in men is
associated with breast growth (198). Moreover, mutations in
AR have been linked with breast cancer in men (199).

It should be added that treatment of ovariectomized mon-
keys with testosterone decreased by about 40% the stimu-
lation of mammary epithelial proliferation induced by E,
(200). It is possible that part of the increased risk of breast
cancer in BRCA-1 mutant patients is associated with the
decreased efficiency of the mutated BRCA-1 gene to interact
with the AR (201). It is also pertinent to mention that female
athletes and transsexuals taking androgens show atrophy of
mammary gland epithelial tissue (202, 203).

B. Preclinical data

Lacassagne (204) first observed in 1936 that treatment of
mice with testosterone propionate delayed the occurrence of
E,-stimulated mammary tumors. In DMBA-induced tumors,
high doses of DHT (0.5-4.0 mg/d) for several weeks caused
the regression of 60% of established tumors (163). Similar
effects were observed with testosterone propionate (205) and
dromostanolone propionate (206, 207).

In support of the early clinical data mentioned above, our
previous studies have clearly demonstrated that androgens
exert a direct inhibitory effect on the proliferation of human
breast cancer cells (208-213). In fact, the first demonstration
of a potent and direct inhibitory effect of androgens on hu-
man breast cancer growth was obtained in the estrogen-
sensitive human breast cancer cell line ZR-75-1 (208). In that
study, as shown in Fig. 17A, DHT not only completely
blocked the stimulatory effect of E, on cell proliferation but

B

>

OO0 CONTROL
e E>
Jo-aDHT

-8 DHT + E2

105 x CELL NUMBER

"0 4 8 12 16 20 24

0 4 8 121620 24
INCUBATION TIME (days)

Fic. 17. Time course of the effect of DHT and/or E, on the prolifer-
ation of ZR-75-1 cells. A, Cells were plated at 1 X 10* cells/2.0-cm?
well; 48 h later (zero time), 1 nM E, (@), 10 nm DHT (), or both
steroids (M) were added, and cell numbers were determined at the
indicated time intervals. Control cells received the ethanol vehicle
only. B, Same as A, except that the initial density was 5.0 X 10°
cells/2.0-cm? well (208).
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also reduced cell growth in the absence of estrogens. At low
cell density (Fig. 17B), it can be seen that DHT completely
prevented breast cancer cell growth.

DHT has been shown to be formed from testosterone and
4-dione in human breast cancer tissue both in vitro in tissue
pieces and in vivo (214). Such data indicate the presence of
5a-reductase in breast cancer tissue, an enzyme thought to be
specific for androgen-dependent tissues. In ZR-75-1 cells,
concentrations of DHT in the incubation medium similar to
the plasma levels found in normal women (215-217) and
breast cancer patients (Ref. 218; 0.3—0.7 nM) are potent in-
hibitors of the mitogenic effect of E, and even inhibit growth
in the absence of estrogens (208). Furthermore, testosterone,
at concentrations observed in adult women (1-3 nMm; Refs.
215-218), is also a potent inhibitor of cell growth. 4-Dione
also led to significant growth inhibition in ZR-75-1 cells,
although the active concentrations (ICsy, 15 nMm) are in the
upper range of the plasma concentrations (1-10 nm) found in
women (215-218).

Several lines of evidence show that the potent growth-
inhibitory effect of androgens observed in ZR-71-1 cells is
mediated through their specific interaction with the AR.
First, the potency of DHT and testosterone to induce anti-
proliferative effects (IC5,, ~0.10 and 0.50 nMm, respectively) is
in agreement with their relative binding affinity for androgen
specific binding sites in intact ZR-75-1 cells as well as in other
human breast cancer cells (219, 220). Such values compare
well with the potency of DHT to specifically stimulate the
secretion of the Zn-a,-glycoprotein (221) and the GCDFP-15
glycoprotein (221, 222) in T47-D human breast cancer cells.
The ability of 4-dione to induce an antiproliferative effect
(IC50, ~15 nm) most likely results from its metabolic trans-
formation into testosterone and DHT (223-225) than from its
direct interaction with the AR (Kp, ~200 nm). Secondly, the
antiandrogen OH-flutamide competitively reversed the ef-
fect of DHT and 4-dione with an apparent dissociation con-
stant (K;, ~110 nm) consistent with its known affinity for the
AR (226, 227).

Because the benefits of combined treatment with an an-
drogen and an antiestrogen have already been observed in
women with breast cancer, (171, 175), in agreement with the
in vitro data mentioned above (208-212), a more precise
understanding of the mechanisms of action of androgens and
antiestrogens in breast cancer cells becomes important. After
a 12-d incubation of ZR-75-1 cells in the presence of 0.1 nm
E, in phenol red-free medium, cell number was increased
2.8-fold above control (P < 0.01; Fig. 18A). The addition of
1 nm DHT, on the other hand, caused a 78% blockade (P <
0.01) of E,-induced ZR-75-1 cell growth, whereas the pure
steroidal antiestrogen EM-139 (228), on the other hand, not
only completely reversed the effect of E, but further inhibited
cell number by 30% below control values (P < 0.01; Fig. 18B).
It can also be seen in Fig. 4B that, in the absence of E,, EM-139
and DHT alone caused 21% (P < 0.01) and 43% (P < 0.01)
inhibitions of basal cell growth, respectively. It can also be
seen in Fig. 18B that the inhibitory effect of DHT is com-
pletely prevented by the addition of the pure antiandrogen
OH-flutamide. Most interestingly, in another study, it was
found that the growth-inhibitory effect of DHT is clearly
additive to that induced by maximally effective concentra-
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Fic. 18. A, Time course of the effect of 0.1 nMm E,, 1 nMm DHT + E,, 0.3
uM EM-139 + E,, or control medium on the proliferation of ZR-75-1
cells during a 12-d incubation period. B, Time course of the effect of
1nm DHT, 0.3 um EM-139, DHT + EM-139, DHT + 0.3 um OH-FLU,
or control medium on the proliferation of ZR-75-1 cells. Three days
after plating at an initial density of 5 X 10° cells/10 cm? per well, cells
were incubated with the indicated concentrations of the compounds
with medium changes every 48 h for the indicated time periods. At the
end of the indicated incubation periods, cell number was determined
with a Coulter counter. Data are expressed as means * SEM of qua-
druplicate wells (263).
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tions of the antiestrogen LY156758, thus indicating an action
mediated by a mechanism different from interaction with the
estrogen receptor (ER; 229). Accordingly, the evidence ob-
tained leaves little doubt that the antiproliferative effect of
androgens does not result from competition for binding to
the ER, but rather is caused by an AR-mediated mechanism
that is additive to blockade of the ER by an antiestrogen.

After our demonstration of the inhibitory effect of DHT
and antiestrogens on ZR-75-1 cell proliferation in vitro (208 -
212, 229), we extended our study in vivo to ovariectomized
athymic mice using the same human breast cancer cells to
more closely mimic the clinical situation in women. We thus
examined the effect of DHT on tumor growth stimulated by
physiological doses of E, administered by SILASTIC-brand
(Dow Corning Corp., Midland, MI) implants.

As illustrated in Fig. 19, E, caused a progressive increase
in total tumor area from 100% (which corresponds to an
average of 0.23 = 0.08 cm?) at the start of the experiment to
226 * 31% after 100 d of treatment. Treatment with DHT, on
the other hand, not only completely reversed the stimulatory
effect of E, on tumor growth but also decreased total tumor
area to 48 = 10% of its original size. The androgen DHT is
thus a potent inhibitor of the stimulatory effect of E, on
ZR-75-1 human breast carcinoma growth in in vivo athymic
mice. Similar inhibitory effects on E,-stimulated tumor
growth were achieved with medroxyprogesterone acetate
[MPA (Provera); Ref. 230], a compound having progesta-
tional, androgenic, and glucocorticoid activities (231). Be-
cause ovariectomized animals supplemented by exogenous
estrogen were used in these studies, such data provide fur-
ther support for a direct inhibitory action of androgens at the
tumor cell level under in vivo conditions, thus adding to the
well known inhibitory effect androgens exerted on the pi-
tuitary gonadal axis in intact women (232).
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Considering the potential importance of androgens in
breast cancer therapy, and to better understand the molec-
ular mechanisms responsible for the antagonism between
androgens and estrogens, we have investigated the effect of
androgens on ER expression in the ZR-75-1 human carci-
noma cell line. The specific uptake of [*H]E, in intact ZR-75-1
cell monolayers was decreased by as much as 88% after a 10-d
preincubation with increasing concentrations of DHT (Fig.
20). A half-maximal effect of DHT on [°H]E, uptake was
observed at 70 pm (209). Preincubation with dexamethasone
and R5020 (100 nM each) had no effect on the specific uptake
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Fic. 19. Effect of 100-d treatment of ovariectomized athymic mice
with Silastic brand implants of E, (1:3000, E,/cholesterol, wt/wt)
alone or in combination with SILASTIC-brand implants of DHT (1:5,
DHT/cholesterol, wt/wt) on average total ZR-75-1 tumor area in nude
mice. Results are expressed as percentage of pretreatment values
(means * SEM of 11 tumors in the E, group, 9 tumors in the E, group,
and 9 tumors in the E, + DHT group; Ref. 230).
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Fic. 20. Effect of preincubation with increasing concentrations of
DHT on [*H]E,-specific binding in ZR-75-1 human breast cancer cells,
hydroxylapatite exchange assay of [*H]E,-specific binding of cytosol
and nuclear (cytosol + nuclear = total) extracts obtained from ZR-
75-1 cells preincubated for 11 d with the indicated concentrations of
DHT. E, specific uptake of [*’H]E, in intact ZR-75-1 cells preincubated
for 10 d with the indicated concentrations of DHT alone (O, control)
or in the presence of 3 uM antiandrogen hydroxyflutamide (®, OH-
FLU). Values are given as means * SE from triplicate determinations
(209).
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of [PH]E, (data not shown). The addition of hydroxyflut-
amide, a nonsteroidal antiandrogen devoid of agonistic ac-
tivity and with no significant affinity for receptors other than
the AR (226, 227) competitively reversed inhibition of [’H]E,
specific uptake by DHT. The inhibition constant (K;) value for
the reversal of DHT action by hydroxyflutamide was esti-
mated at 39 nm (233), in agreement with the affinity of the
antagonist for the AR (227). Thus, the primary site of action
of DHT on [*H]E,-specific binding was clearly consistent
with a specific interaction with the AR, rather than a direct
activation and processing of the ER by DHT (234-239). Sim-
ilar results were observed on progesterone receptor levels,
thus showing a direct inhibitory effect of DHT in human
breast cancer cells (209).

This study showed for the first time that androgens
strongly suppress ER content in the human breast cancer cell
line ZR-75-1, as measured by radioligand binding and
anti-ER monoclonal antibodies. Similar inhibitory effects
were observed on the levels of ER mRNA measured by
ribonuclease protection assay (209). The androgenic effect
was observed at subnanomolar concentrations of the non-
aromatizable androgen DHT, regardless of the presence of
estrogens, and was competitively reversed by the antian-
drogen hydroxyflutamide. Such data on ER expression pro-
vide an explanation for at least part of the antiestrogenic
effects of androgens on breast cancer cell growth and provide
an explanation for the observations showing that the specific
inhibitory effects of androgen therapy are additive to the
standard treatment limited to blockade of estrogens by an-
tiestrogens (229). Another possible clue to the mechanism of
action of DHT in breast cancer cells is provided by the ob-
servation that androgens and estrogens exert opposite effects
on progesterone receptor levels (240).

The data summarized above clearly support the hypoth-
esis that at least part of the antagonism observed between the
action of androgens and estrogens in breast cancer cells (208,
211, 215, 240) may be explained by the heterologous down-
regulation of the ER by an AR-mediated mechanism. The
concentration of DHT needed to exert a half-maximal sup-
pression of ER binding activity (0.07-0.1 nm) is lower than
the concentration known to induce binding and nuclear re-
tention of the ER (215, 234). Moreover, the inhibitory effect
of DHT on ER content was competitively reversed by the
antiandrogen hydroxyflutamide (226, 227). Such data clearly
show that AR mediates the down-regulation of the ER by
DHT observed in ZR-75-1 cells.

The effect of androgens on ZR-75-1 cell proliferation, how-
ever, cannot be solely explained by the suppression of ER
expression, because androgens still exert very potent inhib-
itory effects on growth in the absence of estrogens, even after
prolonged periods of estrogen deprivation before exposure
to androgens (208, 211). Moreover, the antiproliferative ac-
tivity of androgens in estrogen-deprived ZR-75-1 cells is
more pronounced and is additive to that exerted by anti-
estrogens (208, 241).

Down-regulation of ER expression by androgens might be
of crucial importance in their physiological mode of action,
i.e.,, when estrogens are simultaneously present in normal as
well as cancerous mammary gland tissue. In the specific case
of human breast cancer, endogenous androgens may reduce
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the tumor cell sensitivity to estrogens by decreasing ER lev-
els. Thus, in normal breast tissue, endogenous as well as
locally produced androgens are likely to contribute to the
regulation of the level of ER, thus modulating the sensitivity
to estrogens. This inhibitory effect of androgens on intracel-
lular ER concentrations may be expected to leave the relative
effectiveness of the competitive blockade of estrogen action
by antiestrogens unaffected, while decreasing the efficiency
of any residual estrogenic stimulation of cell growth.

In agreement with the in vitro data, Dauvois et al. (242)
have shown that constant release of the androgen DHT in
ovariectomized rats bearing DMBA-induced mammary car-
cinoma caused a marked inhibition of tumor growth induced
by E, (Fig. 21). That DHT acts through interaction with the
AR in DMBA-induced mammary carcinoma is well sup-
ported by the finding that simultaneous treatment with the
antiandrogen flutamide completely prevented DHT action.
Such data demonstrated, for the first time, that androgens are
potent inhibitors of DMBA-induced mammary carcinoma
growth by an action independent from inhibition of gonad-
otropin secretion and suggested an action exerted directly at
the tumor level, thus further supporting in vitro data
obtained with the human ZR-75-1 breast cancer cell line (208,
209).

It should be mentioned that in vivo studies have demon-
strated that controlled release of low-dose MPA, a compound
having androgenic activity, also exerts a potent inhibitory
effect on the development and growth of DMBA-induced
mammary carcinoma in the rat (243, 244). MPA has in fact
been clearly shown to exert androgenic inhibitory effects on
the growth of human breast cancer cells in vitro (209, 231,
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Fic. 21. Effect of 28-d treatment of ovariectomized (OVX) rats with
Silastic brand implants of E,, DHT, E, + DHT, or E, + DHT + twice
daily injections of flutamide (FLU) on average total DMBA-induced
mammary tumor area in the rat. Results are expressed as percentage
of pretreatment values as means *= SEM of 22—-26 tumors per group.
## P < 0.01 OVX rats treated with the indicated steroid vs. OVX
animals at the same time interval (242).
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245), thus suggesting the role of AR in the beneficial effects
of MPA in breast cancer in women (246, 247). As previously
described, MPA is a compound having a complex series of
activities, namely progestational, glucocorticoid, and andro-
genic (231). Despite the beneficial androgenic effects of this
compound observed on human breast cancer cells in vitro
(209, 231, 245) and in clinical studies (246, 247), the recent
results of the Women'’s Health Initiative Study (8) clearly
indicate that this compound is not recommended for long-
term use in normal women where the stimulatory proges-
tational component could well be predominant. A recent
study in rats has shown that the addition of methyltestos-
terone inhibits the marked proliferation of the mammary
gland epithelium induced by a low-dose oral contraceptive
(248).

IV. DHEA Inhibits Breast Cancer
A. Preclinical studies

1. Introduction. Labrie and colleagues (78, 249) first demon-
strated that DHEA possesses relatively potent androgenic
activity and stimulates androgen-dependent gene expres-
sion in the rat ventral prostate. As mentioned earlier, the first
androgen successfully used in the treatment of advanced
breast cancer was testosterone propionate (250). Many stud-
ies subsequently confirmed the beneficial effects of andro-
gens on breast cancer (165, 167-174, 251, 252). Moreover, in
vitro studies have provided the first demonstration of the
direct antiproliferative activity of androgens on the growth
of human mammary carcinoma cells using the cell line ZR-
75-1 as model (208, 253). Interestingly, Poulin et al. (208) have
found that the inhibitory effect of androgens on the growth
of ZR-75-1 human breast carcinoma cells is additive to that
of an antiestrogen. The additive inhibitory effects of an an-
drogen and an antiestrogen on the growth of human breast
carcinoma cell line ZR-75-1 have also been observed in vivo
in nude mice (230).

2. Inhibitory effect of DHEA on breast cancer

a. Prevention of mammary tumor development by DHEA. As
described above, the human adrenals secrete large amounts
of the precursor steroids DHEA and DHEA-S, both of which
are converted into androgens in target intracrine tissues (25,
35,78, 92, 249, 254, 255). To investigate the possibility that
DHEA and its metabolites could have a preventive effect on
the development of mammary carcinoma, we have studied
the effect of increasing circulating levels of DHEA constantly
released from Silastic brand implants on the development of
mammary carcinoma induced by DMBA in the rat. The
DMBA-induced mammary carcinoma in the rat has been
widely used as a model of hormone-sensitive breast cancer
in women (242, 256, 257).

Treatment with increasing doses of DHEA delivered con-
stantly by SILASTIC-brand implants of increasing length and
number caused a progressive inhibition of tumor develop-
ment (258). It is of interest to see that tumor size in the group
of animals treated with the highest dose (6 X 3.0-cm long
implants) of DHEA was similar to that found in ovariecto-
mized animals (Fig. 22), thus showing a complete blockade
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of estrogen action by DHEA. Such data clearly demonstrate
that circulating levels of the precursor adrenal steroid DHEA
comparable to those observed in normal adult premeno-
pausal women (259) exert a potent inhibitory effect on the
development of mammary carcinoma induced by DMBA in
the rat. It is of special interest to see that serum levels of
DHEA of 7.09 * 0.64 nm and 17.5 = 1.1 nm led to a dramatic
inhibition of tumor development to 22% and 11% of animals
bearing mammary carcinoma compared with 68% in control
intact animals. At the highest dose of DHEA used, which
corresponds to serum DHEA values of 27.2 = 2.2 nM, the
incidence of tumors was reduced to only 3.8%. It should be
mentioned that the serum DHEA levels in normal 20- to
30-yr-old women ranges between 8.3 and 17.3 nm (259).

With the previous knowledge of the potent inhibitory ef-
fect of androgens on the growth of human breast cancer as
well as on the development and growth of DMBA-induced
mammary carcinoma in the rat, it is reasonable to suggest
that the present data showing a potent inhibitory effect of
DHEA on the development of DMBA-induced mammary
carcinoma can be at least partially explained by the andro-
genic action of the steroids synthesized by the enzymes
present in the peripheral target tissues, an action exerted
through intracrinology. Although the rat adrenals do not
secrete significant amounts of DHEA (80), the enzymes re-
quired for the formation of androgens and estrogens are
expressed in rat peripheral tissues (260, 261). Such data also
suggest a potential use of DHEA as a physiological approach
for the prevention of breast cancer in women.

b. Inhibitory effects of DHEA on the growth of human breast
cancer xenografts. Because, as mentioned above, androgens
have been clearly demonstrated to inhibit the growth of
human breast cancer in women as well as in laboratory
studies in vitro (167-170, 172,175,208 -213, 230, 242, 262-264)
and DHEA is predominantly transformed into androgens in
the mammary gland, we have studied the possibility that
DHEA could inhibit the growth of the human ZR-75-1 breast
cancer cell line in vivo in nude mice. To avoid the inhibitory
effects of DHEA-derived steroids on gonadotropin secretion,
we have used ovariectomized animals supplemented with E;.

Downloaded from edrv.endojournals.org on September 2, 2005


http://edrv.endojournals.org

170 Endocrine Reviews, April 2003, 24(2):152—-182

As illustrated in Fig. 23, the size of the ZR-75-1 tumors
increased by 9.4-fold over a 291-d period (9.5 months) in
ovariectomized nude mice supplemented with E,; in con-
trast, in control ovariectomized mice that received the vehicle
alone, tumor size decreased to 36.9% of the initial value
during the course of the study (265). On the other hand,
treatment with increasing doses of percutaneous DHEA
caused a progressive inhibition of E;-stimulated ZR-75-1 tu-
mor growth. Inhibitions of 50.4%, 76.8%, and 80.0% were
achieved at 9.5 months of treatment with the daily doses of
DHEA of 0.3, 1.0, or 3.0 mg per animal, respectively (Fig. 23).
In agreement with the decrease in total tumor load, treatment
with DHEA led to a marked decrease in the average weight
of the tumors remaining at the end of the experiment. To our
knowledge, these data provide the first demonstration of the
inhibitory effect of DHEA on the growth of human breast
cancer xenografts in nude mice.

In the ovariectomized mouse, exogenous DHEA repre-
sents the only source of sex steroids in peripheral tissues,
including the mammary gland. Moreover, by itself, DHEA
does not possess any significant androgenic or estrogenic
activity, its activity being dependent upon its transformation
into androgens and/or estrogens in peripheral target intra-
crine tissues (25). Consequently, the inhibition of tumor
growth seen after DHEA treatment in ovariectomized ani-
mals results from its intracrine in situ conversion into an-
drogens in the mammary gland (25, 35, 78, 92, 255). In fact,
we have recently shown that DHEA exerts an almost exclu-
sively androgenic effect in the rat mammary gland (177).
Moreover, DHEA is well known to be converted into an-
drogens, and treatment with DHEA is known to induce
androgen-sensitive gene expression in the rat ventral pros-
tate (78,249). Taken together, these data strongly suggest that
DHEA exerts its inhibition of breast cancer development and
growth through its conversion to androgens and activation
of the AR.
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Fic. 23. Effect of increasing doses of DHEA (a total dose of 0.3, 1.0,
or 3.0 mg) administered percutaneously in two doses daily on average
ZR-75-1 tumor size in ovariectomized nude mice supplemented with
0.5 png E, daily. Ovariectomized mice receiving the vehicle alone were
used as additional controls. The initial tumor size was taken as 100%.
DHEA (0.3, 1.0, or 3.0 mg per animal/d) was administered percuta-
neously on the dorsal skin in a 0.02-ml solution of 50% ethanol-50%
propylene glycol. [Reproduced by permission of Oxford University
Press (265).]
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One proposed mechanism for the inhibitory action of
DHEA has been the antagonism of DHEA-derived 5-diol on
the ER (79, 236, 266). In fact, DHEA can be converted in vivo
and in vitro into the weak estrogen 5-diol, which interacts
with the ER and can exert weak estrogen-like effects inde-
pendent from aromatase (253, 267-269). That this hypothesis
of competition with 5-diol is most unlikely to apply is sup-
ported by the observation that increasing doses of diethyl-
stilbestrol, a highly potent estrogen, do not interfere with the
inhibitory effect of DHEA on human breast cancer MCF-7 cell
proliferation (270). The argument is made even stronger by
the finding that tamoxifen did not interfere with the anti-
proliferative action of DHEA. Moreover, despite the fact that
human ZR-75-1 breast cancer cells do not express 38-HSD
and are thus unable to synthesize androgens, thus explaining
the stimulatory effect of DHEA on the growth of these cells
under in vitro conditions (253), DHEA exerts an inhibitory
effect on the growth of the same cancer cells under in vivo
conditions in nude mice, the androgens originating from
neighboring or distant cells that possess the required mech-
anisms to transform DHEA into androgens in sufficient
amounts to affect other cells after diffusion from their site of
synthesis (271).

A group of researchers have reported that DHEA is in-
hibitory on breast cancer growth in the presence of estrogens,
whereas it can be stimulatory on experimental models in
which estrogens are absent (197, 270). It should be men-
tioned, however, that an absence of estrogens does not exist
in women where comparable levels of E, are found in breast
cancer tissue in pre- and postmenopausal women (272). In
fact, such a hypothetical situation of an absence of estrogens
does not exist in normal women, even after menopause.

Although DHT exerts a potent inhibitory effect on breast
cancer cell proliferation in ZR-75-1 human breast cancer cells
(208, 210), DHT has not always been found to inhibit the
growth of MCF-7 cells. The lack of inhibitory action of DHT
in some MCE-7 cell lines is most likely due to the presence
of a high level of 3a-HSD activity in these cells, thus pre-
venting DHT from exerting its inhibitory effect before its
transformation into 3B-diol, a compound having intrinsic
estrogenic activity (our unpublished data; and Ref. 273). That
the inhibitory effect of DHEA on breast cancer MCF-7 cell
growth is due to interaction with AR is supported by the
finding that the antiandrogen flutamide reversed the inhib-
itory effect of DHEA on MCF-7 human breast cancer cell
proliferation, whereas the antiestrogen tamoxifen had no
effect (274).

c. Additive inhibitory effects of DHEA and the antiestrogen
EM-652 on the growth of DMBA-induced mammary tumors.
Because antiestrogens (230, 275-278) as well as DHEA (258)
can independently inhibit the development of DMBA-
induced mammary carcinoma, we have studied the potential
benefits of combining the new antiestrogen EM-800 with
DHEA on the development of mammary carcinoma induced
by DMBA in the rat. As illustrated in Fig. 24, 95% of control
animals developed palpable mammary tumors by 279 d after
DMBA administration. Treatment with DHEA or EM-800
alone partially prevented the development of DMBA-
induced mammary carcinoma, the incidence being thus re-

Downloaded from edrv.endojournals.org on September 2, 2005


http://edrv.endojournals.org

Labrie et al. ® Role of Androgens and DHEA in Women

duced to 57% (P < 0.01) and 38% (P < 0.01), respectively.
Interestingly, combination of the two compounds led to a
significantly greater inhibitory effect than that achieved by
each compound administered alone (P < 0.01 vs. DHEA or
EM-800 alone). In fact, the only two tumors that developed
in the group of animals treated with both compounds dis-
appeared before the end of the experiment (279).

Such data obtained in vivo support our previous findings
that the inhibitory effects of androgens and antiestrogens on
mammary carcinoma are exerted at least in part by different
mechanisms and that the combination of an androgenic com-
pound with a pure antiestrogen has improved efficacy com-
pared with each compound used alone in the prevention and
treatment of breast cancer in women. The antagonism be-
tween androgens and estrogens on breast cancer growth is
illustrated schematically in Fig. 25. DHEA, secondary to its
predominant transformation into androgens in mammary
gland tissue, exerts an inhibitory effect on mammary carci-
noma development and growth, an effect that counteracts
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Fic. 24. Effect of treatment with DHEA (10 mg, percutaneously, once
daily) or EM-800 (75 ug, orally, once daily), alone or in combination
for 9 months, on the incidence of DMBA-induced mammary carcinoma
in the rat throughout the 279-d observation period. Data are ex-
pressed as percentage of the total number of animals in each group
(279).

DHEA

Fic. 25. Antagonism between the inhibi-

tory effects of androgens and DHEA and the TESTO
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and can even completely neutralize the stimulatory effect of
estrogens.

It should be mentioned that recent data suggest that pro-
gestins exert a negative impact on breast cancer (2-5), with
recent reports indicating an increased risk of the disease in
women (6, 7). It is important to indicate that the absence of
a stimulatory effect of DHEA on the human endometrium
(73, 280) eliminates the need to administer a progestin to
neutralize the stimulatory effect of estrogens in this tissue.

Although the above-mentioned data demonstrate the di-
rect inhibitory effects of androgens and DHEA on breast
cancer growth, it is likely that endogenous androgens and
DHEA play an important physiological role in the control of
normal breast tissue growth and function and that this an-
tagonism between androgens and estrogens is also operative
in breast cancer.

B. Epidemiological studies

Epidemiological studies have generally observed a pro-
tective effect of DHEA on breast cancer, especially in Western
women (191, 193, 281, 282). In fact, low serum DHEA levels
have been associated with breast cancer in women (281),
whereas women with breast cancer were found to have low
urinary levels of androsterone and etiocholanolone, two me-
tabolites of DHEA (283, 284). Moreover, women with pri-
mary operable breast cancer had urinary levels of 11-deoxy-
17-ketosteroids (derived mainly from DHEA-S and DHEA)
lower than normal, thus suggesting that a low secretion rate
of DHEA and DHEA-S could precede the development of
breast cancer. It might be relevant to mention that treatment
with DHEA markedly delayed the appearance of breast tu-
mors in C3H mice that were genetically bred to develop
breast cancer (285).

C. DHEA and other cancers

A series of studies performed in experimental animals
have shown the anticarcinogenic activity of DHEA (258, 286,
287). In fact, DHEA has been found to inhibit progression of
the cell cycle of pancreatic, breast, and colon cancer cells (274,

stimulatory effects of estrogens on breast
cancer proliferation.

&>
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288, 289). Moreover, a series of epidemiological studies sug-
gest an inhibitory effect of DHEA on various types of cancers.
These epidemiological data pertain to breast cancer (281),
prostate cancer (290), and ovarian cancer (291).

V. Rationale for the Use of DHEA as a Source of
Androgens in Postmenopausal Women

A. Tissue-specific androgenic and/or estrogenic activity

of DHEA

The use of DHEA is based on the recent progress achieved
in our understanding of sex steroid physiology in men and
women (23, 25, 27, 33, 84, 86, 90, 92, 261, 280, 292, 294) and
the recognition that women, at menopause, are not only
deprived from estrogens because of a rapid loss of ovarian
activity but also have been deprived from androgens for a
longer period because of a progressive decrease of serum
DHEA levels starting quite a few years before menopause. In
fact, as mentioned earlier, normal women produce andro-
gens in amounts equivalent to two thirds of the total amount
of androgens synthesized in men (Ref. 26; Table 1). Conse-
quently, the pool of androgens in women decreases progres-
sively from the age of 30 yr in parallel with the decrease in
the serum concentration of DHEA and DHEA-S (23). It thus
appears logical to include an androgenic component to HRT
at peri- and postmenopause, thus maintaining a physiolog-
ical balance between estrogens and androgens in each cell
and tissue, a goal that can only be achieved by the local
formation of androgens and estrogens in peripheral tissues
from the steroid precursor DHEA.

An additional reason to use DHEA, the physiological pre-
cursor of androgenic steroids, is the recent finding that es-
trogen therapy, by increasing the concentration of SHBG,
which reduces free testosterone, may accelerate lean mass
loss among postmenopausal women receiving ERT (295).

We feel that the increased understanding of androgen and
estrogen formation and action in peripheral target tissues,
called intracrinology (23, 25, 27, 33, 35, 84, 86, 90, 92, 261, 280,
292, 294), as well as our recent observations indicating the
predominant role of androgens in the prevention of bone loss
after ovariectomy in the rat (296) and the observation of a
similar situation in postmenopausal women (280) have
paved the way for timely and potentially highly significant
progress in the field of sex steroid replacement therapy and
protection of women'’s health during aging. Such a possibil-
ity is well supported by our observations and that of others
of a series of beneficial effects of DHEA in postmenopausal
women (73, 74, 280, 297-300).

B. Benefits of DHEA in postmenopausal women

A series of clinical studies have consistently shown ben-
eficial effects of DHEA on physical and psychological well-
being as well as on bone mineral density (73, 74, 298, 299,
301-306). DHEA replacement in Addison’s disease is asso-
ciated with an improvement in psychological well-being,
mood, and fatigue (70). Most importantly, all these benefits,
including improved libido, have been obtained without sig-
nificant side effect (73, 74).

Labrie et al. ® Role of Androgens and DHEA in Women

The 70-95% reduction in the formation of DHEA and
DHEA-S by the adrenals during aging results in a dramatic
reduction in the formation of androgens and estrogens in
peripheral target tissues, which could well be involved in the
pathogenesis of age-related diseases such as insulin resis-
tance (307, 308) and obesity (309-311). In fact, DHEA has
been found to improve glucose tolerance (312). Moreover,
DHEA has been shown to have immunomodulatory effects
in vitro (313) and in vivo in fungal and viral diseases (314),
including HIV (315), and a stimulatory effect of DHEA on the
immune system has been described in postmenopausal
women (316).

As mentioned above, osteoporosis is a major problem
among aging women, causing morbidity and mortality
mainly through increased fracture rates (317). The use of ERT
requires the addition of progestins to counteract the endo-
metrial proliferation induced by estrogens, whereas both
estrogens and progestins could increase the risk of breast
cancer (5, 318). To avoid the limitations of ERT or HRT, we
have studied the effect of 12 months of DHEA administration
to 60- to 70-yr-old women on bone mineral density, param-
eters of bone formation and turnover, serum lipids, glucose
and insulin, adipose tissue mass, muscular mass, energy, and
well-being, as well as on vaginal and endometrial histology
(280, 297). DHEA was administered percutaneously to avoid
first passage of the steroid precursor through the liver.

We have thus evaluated the effect of chronic replacement
therapy with a 10% DHEA cream applied once daily for 12
months in 60- to 70-yr-old women (n = 15). Anthropometric
measurements showed no change in body weight but a 9.8%
decrease in sc skin fold thickness at 12 months (P < 0.05; Ref.
297). Bone mass density was increased by 2.3% at the hip,
3.75% at the hip Ward’s triangle, and 2.2% at the lumbar
spine level (all P < 0.05; Ref. 280). These changes in bone
mineral density were accompanied by significant decreases
at 12 months of 38% and 22% in urinary hydroxyproline and
in plasma bone alkaline phosphatase, respectively (all P <
0.05). An increase of 135% over control (P < 0.05) in plasma
osteocalcin was concomitantly observed, thus suggesting in-
creased bone formation in agreement with our preclinical
data (296). Such data are in agreement with the finding that
the remaining adrenal androgens play an essential role in the
maintenance of bone mass in postmenopausal women with
Addison’s disease (319).

Testosterone administration to elderly men increases the
fractional synthetic rate of muscle protein as well as muscle
strength (320). The decline of testosterone and DHEA (23, 26,
321, 322) with age could be at least partially responsible for
sarcopenia in older men and women. In fact, an age-related
loss of muscle mass has been observed in women, this loss
being particularly important at menopause (323, 324). Loss of
muscle mass, especially in the lower extremities, could well
increase the risk for fall-related injuries, fractures, and sig-
nificant loss of independence and quality of life (325, 326).

Measurements of midthigh fat and muscle areas by com-
puted tomography have shown a 3.8% decrease (P < 0.05) of
femoral fat and a 3.5% increase (P < 0.05) in femoral mus-
cular area at 12 months of treatment with DHEA (297). There
was no significant change in abdominal fat measurements.
These changes in body fat and muscular surface areas were
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associated with a 12% decrease (P < 0.05) of fasting plasma
glucose and a 17% decrease (P < 0.05) in fasting plasma
insulin levels. Treatment with DHEA had no undesirable
effect on the lipid or lipoprotein profile. In fact, there was an
overall trend for a 3-10% decrease in total cholesterol. Plasma
triglycerides were not affected.

The index of sebum secretion was 79% increased after 12
months of DHEA therapy, with a return to pretreatment
values 3 months after cessation of treatment. DHEA admin-
istration stimulated vaginal epithelium maturation in 8 of 10
women who had a maturation value of zero at the onset of
therapy, whereas a stimulatory effect was also seen in the
three women who had an intermediate vaginal maturation
before therapy. Most importantly, the estrogenic stimulatory
effect observed in the vagina was not found in the endome-
trium, which remained completely atrophic in all women
after 12 months of DHEA treatment (280).

As mentioned above, at the daily 50-mg dose orally,
DHEA administered to women with adrenal insufficiency
led to significant improvements in well-being, mood, and
sexuality in subjects of both sexes (69, 70). Similarly, DHEA
treatment in glucocorticoid-treated patients with systemic
lupus erythematosus (327, 328) led to significant improve-
ment in overall performance and activity. On the other hand,
scores of activity of daily living were improved by DHEA in
patients with myotonic dystrophy (329), whereas no change
was observed in healthy elderly men (330). A significant
improvement in mood and well-being was observed in pa-
tients with major depression (331) and midlife asthenia (332),
whereas no effect was detected in perimenopausal women
(333).

The data obtained after administration of DHEA clearly
indicate the beneficial effects of DHEA therapy in postmeno-
pausal women through its transformation into androgens
and/or estrogens in specific intracrine target tissues without
significant side effects. The absence of stimulation of the
endometrium by DHEA eliminates the need for progestin
replacement therapy, thus avoiding the fear of progestin-
induced breast cancer added to the well known stimulatory
effect of estrogens. The observed stimulatory effect of DHEA
on bone mineral density and the increase in serum osteo-
calcin, a marker of bone formation, are of particular interest
for the prevention and treatment of osteoporosis and indicate
a unique activity of DHEA on bone physiology, namely a
stimulation of bone formation, whereas ERT and HRT can
only reduce the rate of bone loss.

The first studies with DHEA used supraphysiological
doses of the compound going up to 800-1600 mg/d (298, 309,
334). The oral daily dose of 50 mg, however, has been found
as the one providing physiological concentrations of andro-
gens and estrogens (73, 74, 300, 335). We have also deter-
mined that the serum levels of DHEA using a 10% cream
(280) were comparable to the ones obtained after daily oral
administration of 100 mg of DHEA (our unpublished data).

The known specificity of the effect of DHEA in women is
summarized in Table 3. Although bone formation, inhibition
of mammary gland proliferation, stimulation of sebaceous
glands, muscle mass increase, and improved libido are at-
tributed to the formation of androgens in the corresponding
target tissues, the decreased insulin resistance and vaginal
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TaBLE 3. Tissue-specific androgenic and estrogenic effects of
DHEA

A. Androgenic
Bone formation®
Sebaceous gland stimulation®
Mammary gland inhibition®
Muscle mass increase®
Improved libido®%¢
B. Estrogenic
Vaginal mucosa maturation®
Insulin resistance decreased®®
C. No effect
Endometrium®

“ Demonstrated in postmenopausal women.
® Possibly also androgenic.
¢ Possibly also estrogenic.

maturation are best explained by the local formation of es-
trogens. Most importantly, at physiological replacement
doses, DHEA does not stimulate the endometrium, thus re-
moving the need to use a progestin to counteract the stim-
ulation of the endometrium by estrogen. In summary, at
physiological replacement doses, DHEA has been found in
clinical studies to induce a series of beneficial effects closely
associated with the protection of women’s health, whereas
no negative effects have been observed.
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