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Abstract

Estrogen is an active neuroprotectant and is presently investi-
gated as a potential therapy against Alzheimer's disease
for women. To determine if male hormones could also be
neuroprotective, we investigated the effect of testosterone,
methyltestosterone, and epitestosterone at physiological con-
centrations on primary cultures of human neurons induced to
undergo apoptosis by serum deprivation. Serum deprivation
significantly induces neuronal apoptosis in a protracted
fashion. As expected, physiological concentrations of 17-8-
estradiol and transcriptionally inactive 17-a-estradiol protect
neurons against apoptosis. Similar to 17-B-estradiol, physio-
logical concentrations of testosterone are also neuroprotec-
tive. Androgen receptors are present at 8 = 2 fmol/mg protein
in the neuron cultures. The non-aromatizable androgen,
mibolerone, is also neuroprotective and aromatase inhibitor,

4-androsten-4-OL-3,17-dione, does not prevent testosterone-
mediated neuroprotection. In contrast, anti-androgen, flutamide,
eliminates testosterone-mediated neuroprotection. Testoster-
one analog, methyltestosterone, showed androgen receptor-
dependent neuroprotection that was delayed in time indicating
that a metabolite may be the active agent. The endogenous
anti-androgen, epitestosterone, also showed a slight neuro-
protective effect but not through the androgen receptor. These
results indicate that androgens induce neuroprotection directly
through the androgen receptor. These data suggest that andro-
gens may also be of therapeutic value against Alzheimer’s
disease in aging males.
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Epidemiological studies have shown that decreasing levels
of estrogen is a risk factor for Alzheimer’s disease and
hormone replacement therapy (HRT) offers protection against
Alzheimer’s disease (Paganini-Hill 1996; Schneider et al.
1996; Tang et al. 1996; Schneider et al. 1997). In animal
models and cell cultures, estrogen reverses the behavioral
and biochemical changes in ovariectomized rats (Simpkins
et al. 1997) and enhances neuritic outgrowth and survival
(Woolley and McEwen 1993, 1994; McEwen and Woolley
1994; Brinton et al. 1997; Woolley et al. 1997; McEwen
et al. 1999). Estrogen acts through genomic transactivation
and non-genomic pathways (reviewed by Woolley 1999).
Genomic events include up-regulation of brain-derived
neurotrophic factor, nerve growth factor (NGF), epidermal
growth factor (Birge 1996) and of Bcl-2 proteins (Dubal
et al. 1999; Pike 1999). Estrogen also modulates p53
activity and cell fate (Wade et al. 1999). Non-genomic

events involve signal transduction, and it has been shown
that estrogen activates the mitogen-activated protein kinase
cascade in the cerebral cortex (Singh er al. 1999, 2000a;
Toran-Allerand 2000a,b). In addition, estrogen decreases the
amount of amyloid-3 peptide produced in neurons (Jaffe
et al. 1994; Xu et al. 1998) and can protect against amyloid-
B peptide-mediated neurotoxicity (Goodman and Mattson
1996; Behl et al. 1997). Others propose that estrogen acts as
an antioxidant, although it is unlikely that physiological
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levels of estrogen will have antioxidant activity (Behl et al.
1997; Moosmann and Behl 1999).

In contrast, little is known about the neuroprotective role
of androgens in the aging CNS. Men in their sixties are
usually less prone to Alzheimer’s disease than women of the
same age (Molsa et al. 1982; Jorm et al. 1987). However,
androgens eventually decrease with age (Flood et al. 1995;
Vermeulen 1991). Testosterone replacement therapy improves
depression, and verbal and spatial memory in aging men
(Sternbach 1998). At the molecular level, testosterone is
shown to increase NGF and p75-nerve growth factor
receptor and to decrease Alzheimer’s amyloid-f3 peptide in
primary rat cortical neurons (Tirassa et al. 1997; Gouras
et al. 2000). Therefore, decreasing levels of testosterone
could account for men’s increasing susceptibility to
Alzheimer’s disease with age (Molsa et al. 1982).

Although at much lower levels, androgens are also
present in women and decrease with age (Rako 1998).
Decreasing androgen levels are associated with a number of
post-menopausal conditions such as osteoporosis, depres-
sion, reduced muscle and bone mass and increased visceral
fat (Davis 1999). Evaluation of testosterone in neuronal cell
lines failed to reveal a neuroprotective role (Green et al.
1997). In the present study, we assess the role of physio-
logical concentrations of androgens on serum deprivation-
mediated apoptosis of human primary CNS neuron cultures.
We find that testosterone protects neurons against serum
deprivation by acting through androgen receptors.

Methods and materials

Neuronal culture

Human fetal brain tissue (12—16 weeks) was obtained in accord-
ance with the guidelines established by the Medical Research
Council and approved by the Institutional Review Board of McGill
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Fig. 1 Chemical structure of androgen, estrogens and flutamide.

Methyltestosterone

University. Neurons were isolated and cultured as previously
described (LeBlanc 1995). To summarize, brain tissue was minced
in phosphate buffered saline and dissociated with 0.25% trypsin
(Gibco-BRL, Rockville, MD, USA). The cells were subsequently
treated with 10% serum and 0.1 mg/mL deoxyribonuclease I
(Roche Molecular Biochemical, Indianapolis, IN, USA) and the
resulting homogenate filtered through 130- and 70-wm nylon mesh.
The neurons were plated at 3 x 10° cells/mL on poly-L-lysine
(Sigma Chemicals, St Louis, MO, USA) coated ACLAR™
(33C; 5 mm; Allied Chemical Corp., Pottsville, PA, USA) cover-
slips and cultured in vitro for 10 days. The media contains phenol-
free minimal essential media in Earle’s balanced salt solution
containing 0.225% sodium bicarbonate, 1 mm sodium pyruvate,
2 mM L-glutamine, 0.1% dextrose, 1 x antibiotic Pen-Strep (all
products from Gibco-BRL) and 5% decomplemented fetal bovine
serum (HyClone, Logan, UT, USA). In complete serum containing
media, the basal amount of testosterone is present at 9 pm and
estrogen is at 18 pM.

Neuronal treatment

The neurons were serum-deprived in the absence or presence of
2 nM 17-a-estradiol or 17-B-estradiol, 4 nm testosterone enanthate,
epitestosterone or methyltestosterone (the concentration represents
peak physiological levels in reproductive age women and men). All
hormones were purchased from Sigma except methyltestosterone
obtained at United States Pharmacopeia (Rockville, MD, USA).
Testosterone enanthate was used because the ester increases the
duration and action of testosterone. Testosterone enanthate will not
bind the androgen receptor unless the ester is hydrolyzed. The
testosterone enanthate is hydrolyzed into testosterone in the
neuronal cultures as evidenced by the antagonistic effect of
flutamide. The chemical structure of these compounds is shown
in Fig. 1. The media was changed every 48 h. The hormones were
dissolved in various stock concentrations in 100% ethanol and
added to the media to give final concentrations of 2 and 4 nm or the
indicated dose with equivalent amounts of ethanol. Control serum-
deprived neurons receive the equivalent amount of ethanol.
Similarly, mibolerone, flutamide and aromatase inhibitor were
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dissolved in ethanol and added to the media to give final
concentrations of 3 nM mibolerone (DuPont NEN, Boston, MA,
USA), 2 pMm and 20 pM flutamide (Sigma), or 5 ng/mL and 50 ng/
mL 4-androsten-4-OL-3, 17-dione (Sigma). At the end of the
treatment, coverslips were fixed with 4% paraformaldehyde, 4%
sucrose in phosphate buffered solution (Harlow and Lane 1988).

Determination of androgen receptors

Androgen receptors were identified by incubating 6 nm [*H]mibo-
lerone (DuPont NEN; Spec. Act. 85 Ci/mmol) with 6 x 10° neurons
to measure total binding. Non-specific binding was assessed by
competing the binding of [*H]mibolerone with a 200-fold excess
cold mibolerone as previously described (Kaufman et al. 1993).
Specific binding was determined by subtracting non-specific from
total binding and dividing by the protein concentration as
determined by the Lowry assay (Lowry et al. 1951).

Determination of neuronal cell death by TUNEL

Fixed neurons were permeabilized with 0.1% Triton X-100 in 0.1%
sodium citrate. Cell death was detected by TUNEL (TdT-mediated
dUTP nick-end labeling) using the Cell Death Kit I (Roche
Molecular Biochemicals) as described by the manufacturer. All
cells were counterstained with 100 ng/mL propidium iodide
(Pharmingen, Mississauga, Ontario, Canada) to allow confirmation
of the apoptotic morphology of the cells and to detect the total
number of cells present under fluorescence microscopy. The
percentage of neuronal cell death was determined by screening
five areas of each coverslip (a minimum of 500 cells) and
comparing the total number of TUNEL-positive (green fluores-
cence) and morphologically apoptotic cells over the total number of
cells (red fluorescence) present in each sample. The neuronal cell
death was confirmed in representative experiments of each assay
with 3-[4,5-dimethylthazol-2-yl]-2,5-diphenyltetrazolium bromide
(MTT) reducing assays. Briefly, neurons were plated directly into
24-well plates and studied for MTT reduction using the Cell
Proliferation Kit 1 (MTT) as described by the manufacturer (Roche
Molecular Biochemicals; data not shown).

A two-tailed Student’s t-test for unpaired samples was used for
comparison between the level of neuronal cell death in serum-
deprived neurons and that in serum-deprived neurons treated with
hormones. p-values of < 0.05 were used as indicative of statistical
significance.

Results

Androgens are as neuroprotective as estrogens against
serum-deprivation-mediated apoptosis of human
primary neurons

Estrogen is hypothesized to play an important role against
Alzheimer’s disease in women (Birge 1996). Women
receiving HRT are less susceptible to Alzheimer’s disease
(Tang et al. 1996). As HRT often contains androgens
(Gelfand 1992) and men’s susceptibility to Alzheimer’s
disease increases with age in parallel with reduced levels of
androgens (Vermeulen 1991), we investigated the role of
testosterone enanthate, methyltestosterone and epitestosterone
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in neuroprotection against serum deprivation in primary
cultures of human neurons.

We have shown that these human neurons undergo a
protracted form of cell death with active recombinant
caspases (Zhang et al. 2000). Serum deprivation also
induces a protracted cell death but there is a significant
amount of neuronal cell death by serum deprivation within
24 h (p < 0.005) (Fig. 2a). The addition of physiological
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Fig. 2 Androgens offer neuroprotection against serum deprivation-
mediated apoptosis. (a) Time study of neuroprotection by 4 nM
testosterone, epitestosterone or methyltestosterone and 2 nm 17-8-
estradiol or 17-a-estradiol treatment at 24, 48, 72 and 96 h of serum
deprivation. The level of apoptosis in hormone-treated neurons is
expressed as percentage neuronal cell death detected by propidium
iodide and TUNEL staining. Data represents the mean and SEM of
experiments of 10 independent neuronal cultures for all except
methyltestosterone (n = 5). (b) Dose response effect of each hor-
mone on neuronal protection. Data represents the mean and SEM
of eight independent experiments. *p < 0.05, **p < 0.005 indicate
the significance of the difference between serum deprived neurons
in the absence and in the presence of hormone.
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concentrations of 4 nM testosterone enanthate to serum-
deprived neurons eliminates apoptosis completely for 24 and
48 h and significantly reduces apoptosis at 72 and 96 h of
treatment. In contrast, methyltestosterone did not signifi-
cantly inhibit apoptosis at 24 h, but did show a 20%
reduction in apoptosis between 48 and 96 h of treatment
(p < 0.05). The anti-androgen, epitestosterone also had no
statistically significant effect at 24 h but reduced apoptosis
by 20-40% from 48 to 96 h of treatment (p > 0.05). As
shown (Behl et al. 1997; Green et al. 1997; Pike 1999;
Green and Simpkins 2000), 2 nm physiological concentra-
tions of 17-B- (p < 0.005) and 17-a—estradiol (p < 0.05)
were also neuroprotective from 24 to 96 h of treatment.

Addition of 10 times less or between 10 and 100 times
more hormone to serum-deprived neurons shows that the
lower 0.2 or 0.4 nM concentration are slightly more neuro-
protective than the 2 and 4 nM concentration (Fig. 2b).
Increasing the levels of hormone slightly reduced the neuro-
protective effect in 17-a-estradiol and androgen treated
cultures. These results indicate that the neuroprotective
effect of androgens and estrogens at physiological con-
centrations is likely one that is receptor mediated and rule
out a possible antioxidant function in neuroprotection. It
is possible that the higher concentrations of hormones are
slightly toxic to neurons thereby reducing the neuroprotec-
tive effect. Most importantly, the significant neuroprotective
effect observed with the lowest dose of hormone indicates
the strong neuropotency of these hormones.

Androgens directly protect neurons and do not require
aromatization into estrogens

To determine if the neuroprotective role of androgens was
directly through androgen receptors or through aromatization
into estrogens (Balthazart and Ball 1998), we first determined
if androgen receptors were present in our cultures using non-
aromatizable [*H]mibolerone in a binding assay. Our results
show that androgen receptors are present at 8 = 2 fmoles/
mg protein. We then assessed the effect of the non-
aromatizable androgen, mibolerone, on neuroprotection
(Fig. 3). We find that similar to testosterone, mibolerone
significantly protects neurons against serum deprivation
even after 96 h of serum deprivation. The neuroprotective
effect of mibolerone is not as strong as that of testosterone.
Similarly, methyltestosterone also shows neuroprotection at
a lower level than in testosterone. Comparison of the
chemical structure of these compounds (Fig. 1) indicates
that the presence of the 17-methyl group decreases the
neuropotency of androgens. The addition of mibolerone
to testosterone, epitestosterone or methyltestosterone does
not increase neuroprotection in cells treated with hormone
in absence of mibolerone suggesting that both mibolerone
and natural androgens act through the same receptor. The
affinity of mibolerone is at least 100-fold higher than
testosterone, epitestosterone or methyltestosterone (Wilson
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Fig. 3 Mibolerone protects against serum deprivation-mediated
neuronal apoptosis. Serum deprived neurons were treated with 4 nm
epitestosterone, methyltestosterone or testosterone in the presence
or absence of 3 nm mibolerone for 96 h. Data represents the mean
and SEM from three independent neuronal preparations. *p < 0.05,
**p < 0.005 indicate the significance of the difference between serum
deprived neurons in the absence and in the presence of hormone.

and French 1976; Turcotte er al. 1988). Therefore,
mibolerone binding to the androgen receptor would compete
out the other androgens as evidenced by the levels of
neuroprotection consistent with a mibolerone-specific effect.
Together, these results indicate that androgens can be directly
neuroprotective without being aromatized to estrogen.

To confirm that testosterone is not acting by aromatiza-
tion into estrogen, we added a cell permeable aromatase
inhibitor, 4-androsten-4-OL-3,17-dione, to the testosterone-
treated neurons (Fig. 4). The results show that the aromatase
inhibitor does not have a significant effect on neuronal cell
death by serum deprivation (p > 0.8). In the presence of
testosterone, 4-androsten-4-OL-3,17-dione, does not prevent
testosterone-mediated neuronal protection (p > 0.4). These
results confirm the direct action of testosterone rather than
an indirect effect through aromatization into estrogens.

To determine if activation of the androgen receptor results
in the neuroprotective action of testosterone, we assessed
the effect of a non-steroid pure anti-androgen, flutamide
(Simard et al. 1986) on testosterone-mediated neuroprotec-
tion (Fig. 5). Flutamide alone at either 2 or 20 M does not
have a significant effect on neuronal survival or cell death.
However, flutamide significantly abolishes testosterone-
mediated neuroprotection. Together with the mibolerone
and aromatase inhibitor studies, these results strongly
suggest that the neuroprotective function of testosterone
occurs through the androgen receptor. Flutamide also
significantly inhibits the methyltestosterone-mediated neuro-
protection. The effect is not as significant as seen with
testosterone. However, methyltestosterone is also less neuro-
protective than testosterone either because of the 17-methyl
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Fig. 4 Aromatase inhibitor, 4-androsten-4-OL-3,17-dione, does not
inhibit testosterone neuroprotection. Serum deprived neurons were
treated in the absence or presence of 4 nm testosterone and 5 and
50 ng/mL aromatase inhibitor, 4-androsten-4-OL-3, 17-dione (Al),
and kept in culture for 96 h. Neuronal apoptosis was measured as
described and expressed relative to control serum deprived neurons
(arbitrarily placed at 100%). Data represents mean and SEM of
three independent experiments. *p < 0.01, **p < 0.005 indicate the
significance of the difference between serum deprived neurons in
the absence and in the presence of hormone/drug.
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Fig. 5 Flutamide prevents testosterone-mediated neuroprotection.
Serum-deprived neurons treated with 4 nm androgens in the absence
or presence of 2 and 20 pm flutamide for 96 h. Data represents the
mean and SEM of four independent experiments. *p < 0.05,
**p < 0.002 indicates the significance of the difference between
neurons that are serum deprived and those treated with hormone.
Comparison of hormone and flutamide treated cells were made to
serum deprivation in the presence of flutamide.
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group as discussed later or the lower affinity of methyl-
testosterone for the androgen receptor (Wiita et al. 1995).
Alternatively, the slow neuroprotective effect of methyl-
testosterone, which is only observed after 48 h of treatment,
indicates that metabolites of methyltestosterone may be
produced over time and promote neuroprotection through
both androgen receptor dependent (antagonized by fluta-
mide) and androgen receptor independent (not antagonized
by flutamide) mechanisms.

In contrast, flutamide could not inhibit the endogenous
anti-androgen, epitestosterone-mediated neuroprotection
indicating that the neuroprotection of epitestosterone is
independent of androgen receptors. Together, these results
confirm that the neuroprotective effect of testosterone
depends on an interaction with androgen receptors and can
be competed out with antagonists.

Discussion

While much attention has been given to the role of
17-B-estradiol against Alzheimer’s disease, little is known
about the molecular mechanism of androgens in neuro-
protection. Testosterone propionate prevents developmental
neuronal loss in the medial preoptic nucleus of males or
sex-reversed female rats (Dodson and Gorski 1993).
Androgens can increase the volume, neuron number and
synapses of developing rat superior cervical ganglion
(Wright et al. 1991). In aging, there is little evidence that
androgens regulate neuronal survival. However, testosterone
deficiency in males is associated with conditions that
indicate CNS neuronal dysfunction such as depression,
anxiety and memory loss (Sternbach 1998). Furthermore,
replacement therapy significantly improves these symptoms.
Here we show that androgens offer as much neuroprotection
against growth factor deprivation mediated neuronal
apoptosis of CNS differentiated human neurons as 17-B-
estradiol. Neuroprotective effects both occur at physiologi-
cal concentrations. Therefore, we conclude that neurons are
as responsive to androgens as estrogens with respect to
neuronal survival.

We show that physiological levels of testosterone protect
against serum deprivation-mediated neuronal apoptosis
through interaction with androgen receptors. We confirmed
the presence of androgen receptors in the human neuron
cultures. We show that the non-aromatizable form of
androgen, mibolerone, induces neuroprotection similar to
testosterone. Mibolerone is a highly specific synthetic
androgen that binds the androgen receptor with 100-fold
higher affinity than the natural androgen, testosterone
(Wilson and French 1976; Traish et al. 1986; Turcotte
et al. 1988; Markiewicz and Gurpide 1997). Furthermore,
aromatase inhibitor, 4-androsten-4-OL-3,17-dione, does
not block testosterone-mediated neuroprotection. However,
the neuroprotective effect of testosterone is blocked by
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the pure synthetic anti-androgen, flutamide (Simard et al.
1986; Namer 1988; Brogden and Chrisp 1991; Labrie 1993;
Markiewicz and Gurpide 1997; Singh et al. 2000D).
Therefore, the neuroprotective effect of testosterone is
mediated through androgen receptors.

The neuroprotective effect of testosterone is 100% up to
48 h after serum deprivation. Thereafter, there is increasing
neuronal apoptosis, even in the presence of testosterone,
although the levels are generally 60% lower than in absence
of hormone. Since we change the media every 48 h, turnover
of testosterone cannot be responsible for the less protective
effect. It is more likely that cumulative insult caused by
continuous serum deprivation is responsible for the inability
of testosterone to neuroprotect completely in time. As shown
in other systems, inhibiting cell death with one compound
may not be sufficient for the treatment of neurodegenerative
diseases and combination therapies including both cell death
inhibitors and pro-survival factors may be necessary to
completely suppress neuronal cell death.

The neuroprotective effect of the weak endogenous anti-
androgen, epitestosterone (Nuck and Lucky 1987; Starka
et al. 1989; Starka et al. 1991) is surprising. This is clearly
not the case for the other anti-androgen, flutamide. Further-
more, flutamide did not antagonize the epitestosterone
effect, indicating that epitestosterone unlike mibolerone,
testosterone and methyltestosterone, cannot act through the
androgen receptor. Epitestosterone is aromatized into 17-a-
estradiol (Finkelstein et al. 1981). Given that the neuropro-
tective effect of epitestosterone occurs only after 48 h of
treatment, it is likely that the neuroprotective effect is
mediated through aromatization into 17-a-estradiol. As shown
by others, and us here, the transcriptionally inactive 17-o-
estradiol is also neuroprotective (Green et al. 1997). It is
proposed that 17-a-estradiol mediates neuroprotection through
signal transduction rather than through a genomic pathway.

The fact that methyltestosterone and mibolerone are not
as neuroprotective as testosterone indicates that the structure
of the steroid may be very important in mediating the neuro-
protective effect of androgens. Comparison of the chemical
structure of the three compound shows that mibolerone and
methyltestosterone share a 17-methyl group that is absent in
testosterone. Possibly, this methyl group accounts for the
lesser neuropotency of methyltestosterone and mibolerone.

At this time, we do not know the exact mechanism of
action of androgens in these neurons. Like estrogen,
androgens are nuclear receptor proteins that can activate
gene transcription or act through signal transduction. The
neuroprotective effect of estrogen is known to act through
the estrogen receptor and to activate both genomic and non-
genomic pathways of neuronal protection (Woolley 1999).
Through the genomic pathway, estrogen up-regulates Bcl-2
levels (Dubal et al. 1999; Pike 1999) and it is possible that
increased Bcl-2 levels enhance neuronal protection against
serum deprivation. Whether androgens regulate gene

expression or activity of survival genes in a manner similar
to estrogens remains to be determined but this is a likely
mechanism to explain the neuroprotective nature of andro-
gens, which are well known to support growth and survival
of androgen responsive tissues.

Our results in primary cultures of human neurons contrast
with those observed in the estrogen responsive, human
SK-N-SH, neuronal cell line (Green et al. 1997). Androgens
are metabolized by these cells and can affect proliferation
(Maggi et al. 1998). However, it is not unexpected to find
differences between primary neurons and neuroblastoma
cell lines as these differ in many ways such as in the state
of differentiation, cell growth and cell death. In vivo,
androgen receptors are expressed in the temporal, frontal
and hippocampal regions of the brain (Puy et al. 1995;
Finley and Kritzer 1999). Androgen receptors are selectively
localized to neuronal subtypes, and immunoreactivity
appears specific to pyramidal neurons in primate prefrontal
cortex (Finley and Kritzer 1999). The number of androgen
receptors does not differ in male and female rat or monkey
brains (Clancy et al. 1992). It is possible that the neuro-
protective effect of testosterone through androgen receptors
observed in human neurons in culture could also occur in the
human brain.

Our findings raise the possibility that androgens could
help in the treatment of Alzheimer’s disease in a manner
similar to estrogen-replacement therapy in women. Symp-
toms associated with the decreasing levels of androgen in
both men and women are alleviated by hormone replace-
ment therapy. The content of androgens in women’s HRT
should be taken into consideration in epidemiologic studies
on the effect of HRT against Alzheimer’s disease. Regard-
less of the mechanism, these results show an important
new lead in the treatment of neurodegenerative diseases.
Androgens may prove to be an effective treatment for aging
males and offer neuroprotection against Alzheimer’s disease.
However, the time of treatment is likely very important to
have a beneficial effect. In post-mortem human hippocam-
pus, the amount of androgen receptors significantly decrease
with age in the CA1 region (Tohgi et al. 1995). Therefore,
decreasing amounts of androgen receptors are likely to result
in these cells becoming non-responsive to androgens.
Similar to the inability of HRT to act against Alzheimer’s
disease when given to post-menopausal women (Mulnard
et al. 2000), it is unlikely that treatment with androgens after
down-regulation of androgen receptors in the brain will be
helpful.
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