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STROGENS have widespread biologic actions,
and there are naturally occurring phytoestro-
gens that mimic some of the actions of endog-

enously produced estrogens. In this review, we will
focus on new biochemical and molecular aspects of
the action of estrogen, as well as the clinical and phys-
iologic aspects.

 

SYNTHESIS, TRANSPORT, 

AND METABOLISM OF ESTROGENS

 

Synthesis of Estrogens

 

The naturally occurring estrogens 17

 

b

 

-estradiol
(E

 

2

 

), estrone (E

 

1

 

), and estriol (E

 

3

 

) are C

 

18

 

 steroids de-
rived from cholesterol (Fig. 1). After binding to lipo-
protein receptors, cholesterol is taken up by steroido-
genic cells, stored, and moved to the sites of steroid
synthesis. This intracellular movement is facilitated
by the cytoskeleton and by intracellular carrier pro-
teins such as the sterol carrier protein-2.

 

1

 

 Different
steroids are formed by reduction of the number of
carbon atoms from 27 to 18. The rate-limiting step
in steroid production is the transfer of cholesterol
from the cytosol to the inner membrane of the mi-
tochondrion, where the cytochrome P450 enzymes
that catalyze the cleavage of the side chain of cho-
lesterol are located. The steroidogenic acute regula-
tory protein is an indispensable component in this
transfer process.

 

2

 

 Mutations of this protein result in
a severe inability to synthesize steroids and are there-
fore potentially lethal.

 

3

 

Aromatization is the last step in estrogen forma-
tion. This reaction is catalyzed by the P450 aroma-

E

 

tase monooxygenase enzyme complex that is present
in the smooth endoplasmic reticulum and functions
as a demethylase. In three consecutive hydroxylating
reactions, estrone and estradiol are formed from
their obligatory precursors androstenedione and tes-
tosterone, respectively (Fig. 1). The final hydroxylat-
ing step in aromatization does not require enzymatic
action and is not product sensitive.

Several plant compounds have structural and func-
tional similarities to estrogens and are therefore re-
ferred to as phytoestrogens (Fig. 1). Genistein and
daidzein are isoflavonoids found in soybeans and clo-
ver. Green tea and various legumes contain the lignans
enterolactone and enterodiol. Genistein inhibits ste-
roidogenic enzymes

 

4

 

 as well as tyrosine kinase en-
zymes

 

5

 

 and may have antioxidant activity.

 

6

 

 Some
epidemiologic data suggest that diets rich in phyto-
estrogens protect against breast cancer, prostate can-
cer, colon cancer, cardiovascular disease, and osteo-
porosis.

 

7

 

Endogenous Sources of Estrogens

 

The primary sources of estradiol in women are the
theca and granulosa cells of the ovaries and the lutein-
ized derivatives of these cells. According to the “two-
cell” theory of estrogen synthesis, the theca cells se-
crete androgens that diffuse to the granulosa cells to
be aromatized to estrogens.
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 There is, however, evi-
dence that both of these types of cell may be able
to form both androgens and estrogens.

 

9

 

 Estrone
and estriol are primarily formed in the liver from es-
tradiol.

Aromatase activity has also been detected in mus-
cle,

 

10

 

 fat,

 

11

 

 nervous tissue,

 

12

 

 and the Leydig cells of
the testes.

 

13

 

 During pregnancy, estriol is synthesized
in the syncytiotrophoblast

 

14

 

 by aromatization of 16

 

a

 

-
hydroxyandrostenedione. The latter compound is de-
rived from 16

 

a

 

-hydroxyepiandrosterone sulfate, which
is produced by the fetal liver and desulfated in the
placenta. 16

 

a

 

-Hydroxyepiandrosterone sulfate in turn
is derived from dehydroepiandrosterone sulfate pro-
duced in the fetal adrenal gland. The combination
of the fetal adrenal gland and liver and the placenta
has been referred to as the “fetoplacental unit of
steroid biosynthesis.”

Puberty in girls is initiated by low-amplitude noc-
turnal pulses of gonadotropin that raise serum estra-
diol concentrations to 15 to 35 pg per milliliter (55
to 128 pmol per liter).

 

15

 

 During menstrual cycles,
estradiol production varies cyclically, with the highest
rates and serum concentrations in the preovulatory
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Figure 1.

 

 Structure and Production of Endogenous Estrogens and Structure of Phytoestrogens.
Androstenedione and testosterone are the obligatory precursors of estrogens (top panel). The P450 aromatase monooxygenase
enzyme complex catalyzes their conversion into estrogens. In this three-step process, three molecules of oxygen and three reducing
equivalents from NADPH are used. In the liver, estradiol can be converted into estriol (not shown).
Genistein and daidzein are isoflavonoids, and enterolactone is a lignan (bottom panel). In isoflavonoids, the number and positions
of the hydroxyl substituents determine the degree of steric homology with 17

 

b

 

-estradiol and therefore the binding affinity for the
estrogen receptor. The phenyl groups in isoflavonoids and lignans mediate the antioxidant capacity of these compounds.
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phase

 

16,17

 

 (Table 1). Estradiol production and serum
concentrations are lowest premenstrually. In the per-
imenopausal period, depletion of ovarian follicles
leads to a steady decline in ovarian estradiol produc-
tion, although serum estradiol concentrations vary
considerably. In postmenopausal women, serum es-
tradiol concentrations are often lower than 20 pg per
milliliter (73 pmol per liter), and most of the estra-
diol is formed by extragonadal conversion of testos-
terone. Estrone is the predominant estrogen in these
women (Table 1). The level of estrogen synthesis in
extragonadal tissues increases as a function of age
and body weight.

Little is known about the factors that regulate es-
trogen production in postmenopausal women, but
in the reproductive period control is exerted by the
gonadotropins. Genes responsive to follicle-stimulat-
ing hormone, for instance, govern the expression of
steroidogenic enzymes.

 

18

 

 This trophic control is mod-
ified by paracrine factors. The insulin-like growth fac-
tors,

 

19

 

 for example, facilitate the action of follicle-
stimulating hormone in follicular development, and
the theca-derived growth factors or androgens recip-
rocally influence the action of follicle-stimulating hor-
mone on granulosa cells. Androgen-receptor messen-
ger RNA in granulosa cells is down-regulated by
follicle-stimulating hormone. This inverse relation is
part of the mechanism that determines which follicle
will be the dominant estrogen-secreting follicle in a
given menstrual cycle.

 

20

 

 In peripheral tissues, the
production of different estrogens and their intercon-
version depend on the local expression and activity
of aromatase, 17

 

b

 

-hydroxysteroid dehydrogenases,
and estrone sulfatases. Polymorphisms in the genes
coding for steroidogenic enzymes influence estrogen

production. Further evaluation of these polymor-
phisms with respect to the risk of cancer

 

21

 

 or the need
for estrogen therapy

 

22

 

 may make possible a more in-
dividualized therapeutic approach in postmenopaus-
al women.

 

Transport and Metabolism of Estrogens

 

In the serum, estradiol reversibly binds to sex-hor-
mone–binding globulin,

 

23

 

 a 

 

b

 

-globulin, and binds
with less affinity to albumin in a nonsaturable and
nonstoichiometric manner (Fig. 2); about 2 to 3 per-
cent is free. Estrogens are metabolized by sulfation
or glucuronidation, and the conjugates are excreted
into the bile or urine. Hydrolysis of these conjugates
by the intestinal flora and subsequent reabsorption of
the estrogen result in an enterohepatic circulation.

Estrogens are also metabolized by hydroxylation
and subsequent methylation to form catechol and
methoxylated estrogens.

 

24

 

 Hydroxylation of estrogens
yields 2-hydroxyestrogens, 4-hydroxyestrogens, and
16

 

a

 

-hydroxyestrogens (catechol estrogens), among
which 4-hydroxyestrone and 16

 

a

 

-hydroxyestradiol are
considered carcinogenic. Methylation of the 2- and
4-hydroxyestrogens by catechol 

 

O

 

-methyltransferase
yields methoxylated estrogen metabolites.

 

25

 

 Catechol
estrogens bind to estrogen receptors and have weak
estrogenic activity in animals, and they may inhibit
catechol 

 

O

 

-methyltransferase in the synaptic clefts
between neurons. In addition, catechol estrogens are
capable of continuous metabolic redox cycling, a proc-
ess that yields quinone intermediates as metabolites.
Because of the formation of free radicals in this
process and the covalent binding of these interme-
diates to DNA, it has been proposed that estrogens
have genotoxic activity.

 

26

 

*To convert values for serum estradiol to picomoles per liter, multiply by 3.67; to convert values for daily estradiol
production to nanomoles, multiply by 3.67; to convert values for serum estrone to picomoles per liter, multiply by 3.70;
to convert values for daily estrone production to nanomoles, multiply by 3.70; to convert values for serum estriol to
picomoles per liter, multiply by 3.47; and to convert values for daily estriol production to nanomoles, multiply by 3.47.
Data are from Baird and Fraser

 

16 

 

and Flood et al.
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17b
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STRADIOL

 

E

 

STRONE

 

E

 

STRIOL

 

SERUM

CONCENTRATION

DAILY

PRODUCTION

SERUM

CONCENTRATION

DAILY

PRODUCTION

SERUM

CONCENTRATION

DAILY

PRODUCTION

 

pg/ml µg pg/ml µg pg/ml µg

 

Follicular 40–200 60–150 30–100 50–100 3–11 6–23

Preovulatory 250–500 200–400 50–200 200–350 — —

Luteal 100–150 150–300 50–115 120–250 6–16 12–30

Premenstrual 40–50 50–70 15–40 30–60 — —

Postmenopausal <20 5–25 15–80 30–80 3–11 5–22
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Figure 2.

 

 Ovarian Synthesis, Transport, and Metabolism of Estrogens.
After synthesis, mainly in the ovary, 17

 

b

 

-estradiol is secreted into the bloodstream, where it binds to sex-hormone–binding globulin
and albumin. Free estrogens diffuse into target tissues to exert their specific genomic or nongenomic effects. Lipoidal estrogens
are synthesized in the blood and presumably in other tissues but accumulate predominantly in fat. Enzymatic catabolism of estro-
gens yields the hydroxyestrogens and methoxyestrogens.
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Lipoidal estrogens are fatty esters of estrogens that
comprise a separate class of steroid hormones.

 

27

 

 Al-
though they are produced in various tissues in vitro,
lipoidal estrogens are found predominantly in adi-
pose tissue (Fig. 2). They are synthesized in blood,
where they circulate and bind to lipoproteins. Overall,
less than 10 percent of serum estradiol is associated
with lipoproteins, mainly high-density lipoproteins,

 

28

 

but serum estradiol can be transferred to low-densi-
ty lipoproteins by an unknown carrier mechanism.
Lipoidal estrogens are more resistant to catabolism
than free estrogens and are therefore cleared slowly.
After lipoprotein-receptor–mediated uptake by cells
and local hydrolysis, they may serve as a potentially
relevant steroid reserve. Lipoidal estrogens also low-
er the concentration of estradiol necessary to inhibit
oxidation of low-density lipoproteins in vitro.

 

29

 

MOLECULAR ACTIONS OF ESTROGENS

 

The specific nuclear actions of estrogens are deter-
mined by the structure of the hormone, the subtype
or isoform of the estrogen receptor involved, the
characteristics of the target gene promoter, and the
balance of coactivators and corepressors that modulate
the final transcriptional response to the complexes
of estrogen and estrogen receptors.

 

Ligand-Dependent Activation of Estrogen Receptors — 
The Classic Pathway

 

The estrogen receptor, unattached to its ligand
and loosely bound in its cytoplasmic or nuclear lo-
cation, is attached to receptor-associated proteins.
These proteins serve as chaperones that stabilize the
receptor in an unactivated state or mask the DNA-
binding domain of the receptor.

 

30

 

 Other receptor-
associated proteins may contribute to cross-talk be-
tween different signal pathways. The exact location of
estrogen and other steroid-hormone receptors is not
entirely clear. They are probably in an equilibrium
distribution between the cytoplasm and the nucleus;
this equilibrium is then shifted after ligand binding.
As free estrogen diffuses into the cell, it binds to the
ligand-binding domain of the receptor, which disso-

ciates from its cytoplasmic chaperones; the complex
of estrogen and estrogen receptor then diffuses into
the cell nucleus. These estrogen–estrogen receptor
complexes bind to specific sequences of DNA called
estrogen-response elements as homodimers or het-
erodimers.

 

31

 

 The estrogen–estrogen receptor com-
plexes bind not only to the response elements but also
to nuclear-receptor coactivators or repressors (Fig. 3).
The exact mechanism of the nuclear translocation of
estrogen–estrogen receptor complexes is not yet fully
known, but it is known that the cytosolic protein ca-
veolin-1 stimulates this translocation process through
direct interaction with the receptor molecule.

 

32

 

Estrogens also regulate the transcription of genes
that lack functional estrogen-response elements by
modulating the activity of other transcription factors.
The binding of the estrogen receptor to subunits of
activating protein 1, for example, results in the for-
mation of a transcription factor.

 

33

 

 Estrogen receptors
also interact with the nuclear factor 

 

k

 

B.

 

34

Estrogen Receptors a and b

Estrogen receptors are members of the nuclear
hormone–receptor superfamily, which has approxi-
mately 150 recognized members. Estrogen receptors
have several functional domains. The DNA-binding
domain contains two zinc fingers that are involved in
receptor binding and dimerization. The ligand-bind-
ing domain contains different sets of amino acids that
bind to different ligands; this domain also interacts
with coregulatory proteins. The N-terminal domain
has a high degree of variability and normally con-
tains a transactivation domain that can interact di-
rectly with factors of the transcriptional machinery.
The C-terminal domain contributes to the transacti-
vation capacity of the receptor.

There are two subtypes of estrogen receptor and
several isoforms and splice variants of each subtype.
The first subtype, the classic estrogen receptor a,35

was first cloned in 1986; the second subtype, estrogen
receptor b, was discovered more recently.36 These two
receptor subtypes vary in structure, and their encod-
ing genes are on different chromosomes. The estro-

Figure 3 (facing page). Classic Pathway of Estrogen Signal Transduction.
When an estrogen molecule binds to an estrogen receptor (ER), the receptor dissociates from its cytoplasmic chaperones, the re-
ceptor-associated proteins. The hormone–receptor complex then moves to the nucleus, where it binds to DNA and initiates tran-
scription. Transcription is catalyzed by RNA polymerase II (POL II) and requires the assembly of various proteins, including the
TATA-box–binding protein (TBP) and other associated factors at a TATA box. Other transcription factors join thereafter, completing
the preinitiation complex. Activated, phosphorylated (P) estrogen receptors interact with several proteins, such as the 160-kD ster-
oid-receptor coactivator protein (P160) and p300–cyclic AMP response-element–binding protein (CBP). This complex binds to the
estrogen-response element (ERE) through the DNA-binding domain (DBD) of the receptor and stimulates transcription; proposed
mechanisms of stimulation include stabilization of the preinitiation complex, chromatin remodeling, and interaction with other tran-
scription factors.
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gen receptor a gene has been mapped to the long
arm of chromosome 6, whereas the estrogen recep-
tor b gene is located on band q22–24 of chromo-
some 14.

Although the DNA-binding domains of estrogen
receptors a and b are very similar, the overall degree
of homology of the receptors is low. This is particular-
ly true for the ligand-binding domain, of which only
55 percent of the amino acid sequence is shared.37 As
a result, some ligands bind to the two receptors with
different affinities (Table 2). For example, the short-
acting 17a-estradiol and the biologically weak estrone
have a higher affinity for estrogen receptor a, but at
least two phytoestrogens, genistein and coumestrol,
bind with higher affinity to estrogen receptor b.38

The selective estrogen-receptor modulator raloxifene
binds with higher affinity to estrogen receptor a,
whereas several environmental pollutants, such as the
alkylphenols, have a higher affinity for estrogen re-
ceptor b.39

The tissue distributions of estrogen receptor a and
estrogen receptor b differ, although there is some
overlap. Granulosa cells and developing spermatids
contain mostly estrogen receptor b, and this subtype
is present in several nonclassic target tissues, includ-
ing the kidney, intestinal mucosa, lung parenchyma,
bone marrow, bone, brain, endothelial cells, and pros-
tate gland.40 In contrast, endometrium, breast-can-
cer cells, and ovarian stroma contain mostly estrogen
receptor a.

A man lacking functional estrogen receptors41 was
found to have severe osteoporosis and reduced fer-
tility. Both male and female mice in which the gene
for estrogen receptor a is disrupted are infertile42;
femoral bone density is slightly decreased in the fe-
males and markedly decreased in the males. The pro-
tective effects of estrogen after carotid vascular inju-
ry were unaltered in estrogen receptor a–knockout
mice.43 Female mice in which the gene for estrogen
receptor b is knocked out are infertile, and male
mice with this defect have prostatic hyperplasia and
loss of abdominal fat but are fertile.44 In mice in
which the genes for both estrogen receptors a and
b are knocked out, the females have ovaries that con-
tain seminiferous tubule–like structures that are filled
with Sertoli-like cells, and the males are infertile be-
cause of a reduction in the number and motility of
epididymal sperm — a phenotype similar to that in
male estrogen receptor a–knockout mice.45

Selective Estrogen-Receptor Modulators

The term “selective estrogen-receptor modulator”
was introduced to define nonsteroidal ligands such
as tamoxifen that antagonize the action of estrogen in
some tissues, such as the breast, and mimic its action
in others, such as the uterus. Among postmenopaus-

al women, the agonist action of estrogen is desired
in bone for the maintenance of density and in the
cardiovascular system and brain for the maintenance
of function, but not in the breast or endometrium.
Raloxifene has estrogen-like effects on bone tissue
and on serum lipid concentrations, but not on breast
and endometrial tissue.46 In the brain, however, ral-
oxifene is more of an estrogen antagonist, because it
increases the vasomotor symptoms of estrogen defi-
ciency.

The mechanism of the tissue selectivity of these
compounds is complex. On both estrogen receptor
a47 and estrogen receptor b,48 the conformation of
the ligand-binding domain changes in different ways
when estradiol, raloxifene, or genistein binds to it.
Consequently, the conformation of a major transac-
tivation domain is altered so that a different surface
is exposed to the nuclear-receptor coactivators or re-
pressors. Therefore, the transcriptional effects may
vary. For example, tamoxifen and raloxifene serve as
transcriptional activators at activating protein-1 sites
when they form complexes with estrogen receptor b
but suppress transcription when forming complexes
with estrogen receptor a. Estradiol activates tran-
scription when bound to estrogen receptor a but ex-
erts opposite transcriptional effects when bound to
estrogen receptor b.49

*Values range from 0 to 100, with higher values
indicating greater binding affinity.

†Data are from Kuiper et al.38

‡Data are from Kuiper et al.39

TABLE 2. RELATIVE BINDING AFFINITIES 
OF DIFFERENT LIGANDS FOR 
ESTROGEN RECEPTOR a AND 

ESTROGEN RECEPTOR b.*

LIGAND

ESTROGEN

RECEPTOR a
ESTROGEN

RECEPTOR b

17b-Estradiol† 100 100

17a-Estradiol† 58 11

Estriol† 14 21

Estrone† 60 37

4-Hydroxyestradiol† 13 7

2-Hydroxyestrone‡ 2 0.2

Tamoxifen‡ 4 3

Raloxifene‡ 69 16

Genistein‡ 4 87

Coumestrol‡ 20 140

Daidzein‡ 0.1 0.5

4-Octylphenol‡ 0.02 0.07

Nonylphenol‡ 0.05 0.09
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Coactivators and Corepressors of Estrogen Receptors

Estrogen receptors interact with several coregula-
tory proteins that are intercalated between the acti-
vated receptor and the transcriptional machinery, as
noted previously (Fig. 3). To form a transcription-
initiation complex, the assembly of various factors,
such as the TATA-box–binding protein and other as-
sociated factors at a TATA box, is required by RNA
polymerase II. In contrast, nuclear-receptor coregula-
tory proteins interact with the receptor molecule to
modulate its transcriptional capacity. These oligo-
meric complexes, which consist of estrogen receptors,
transcription factors, and coactivator or corepressor
proteins, are believed to provide stability and tran-
scriptional specificity.

The 160-kD steroid-receptor coactivator protein50

and the p300–cyclic AMP response-element–bind-
ing proteins51 appear to have the greatest capacity to
increase the transcriptional activity of estrogen recep-
tors. In contrast, corepressors suppress transcription
after being tethered to a promoter by a DNA-bound
receptor. The protein that acts as a corepressor of es-
trogen-receptor activity is a member of the latter
class.52 This protein directly interacts with the ago-
nist- or antagonist-occupied receptor but also com-
petes with steroid-receptor coactivator proteins. This
is an example of how the balance of corepressors and
coactivators influences the transcriptional activity of
activated estrogen receptors. It therefore seems likely
that part of estrogen-receptor antagonism is a result
of the recruitment of corepressors.53

Estrogen-Response Elements and Estrogen-Response 
Units

The estrogen receptor is a transcription factor that,
after being activated, establishes a direct nuclear in-
teraction by binding to the estrogen-response ele-
ments of DNA, which confer estrogen inducibility
on the gene. Estrogen-response elements are present
in the regulatory regions of estrogen target genes
(Fig. 3).

The sequence 5'GGTCAnnnTGACC3' from the
Xenopus laevis vitellogenin gene (n denotes a random
nucleotide) has been defined as the consensus estro-
gen-response element sequence.54 It is a 13-bp inverted
repeat with a spacing of three variable bases. Howev-
er, only a small number of the most estrogen-induc-
ible genes contain these consensus estrogen-response
elements. In most cases, variant estrogen-response el-
ements have been described. In the murine Bcl-xl

gene promoter, for instance, the sequence 5'GGT-
CAnnnTGGCC3', which differs from the consensus
sequence by 1 bp, mediates the inducibility of estro-
gen.55 These variant sequences bind estrogen recep-
tors with less affinity, depending on the flanking
bases.56

Furthermore, variant estrogen-response elements
or even partial estrogen-response elements, often sep-
arated by many base pairs, can act in combination to
confer estrogen responsiveness. These combinations
are referred to as estrogen-response units. In the gene
for human transforming growth factor a, for instance,
the estrogen-responsive sequence is a 5'GGTCA-
nnnnTGCCC3' element that is separated by 20 bp
from a 5'GGTGAnnnTAGCC3' element.57

Alternative Pathways

Ligand-Independent Activation of Estrogen Receptors

Most nuclear receptors are phosphoproteins, and
their function can be altered by changes in their phos-
phorylation in the absence of a hormonal ligand.58

The activators of protein kinases, such as growth fac-
tors, can elicit estrogen-independent activation of the
receptor molecule by inducing phosphorylation of
the receptor at sites that differ according to the iden-
tity of the activator (Fig. 4). Phosphorylation occurs
predominantly at specific serine or tyrosine residues
and is catalyzed by enzymes such as receptor tyro-
sine kinase and mitogen-activated protein kinases.59

Mitogen-activated protein kinases are composed of
several serine–threonine kinases that are activated in
response to various cell-growth signals and transduce
extracellular signals to intracellular targets by way of
membrane receptors.

In vitro results have proved the existence of such
cross-talk between signal pathways in the case of the
activation of estrogen-independent receptors by dopa-
mine,60 epidermal growth factor, transforming growth
factor a,61 insulin or insulin-like growth factor-1,62

heregulin,63 and cyclic AMP.64 Epidermal growth fac-
tor consistently induced markers of estrogenic action
in vivo, such as the augmentation of progesterone
messenger RNA transcripts, whereas it failed to have
similar effects in estrogen-receptor–knockout mice.65 

Nonnuclear Actions of Estrogens

The traditional estrogen-signaling pathway involv-
ing nuclear interaction takes minutes or hours to in-
crease protein synthesis by transcriptional activation.
Estrogens have other effects that cannot be ex-
plained by a transcriptional mechanism because of
their rapid onset. These effects are the result of di-
rect estrogenic action on cell membranes and are
mediated by cell-surface forms of estrogen receptor
(Fig. 4). Although these receptors remain largely
uncharacterized, they are thought to resemble their
intracellular counterparts.66 Examples of effects me-
diated by this alternative pathway are the short-term
vasodilation of coronary arteries,67 the rapid insulin-
otropic effect of estradiol on pancreatic beta cells,68

and the rapid activation of growth-factor–related sig-
naling pathways in neuronal cells.69
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There is a direct link between estrogen cell-sur-
face receptors and the mitogen-activated protein ki-
nase signaling cascade (Fig. 4).70 Coupling of the
bound membrane estrogen receptor to the mitogen-
activated protein kinase pathway has been demon-
strated in osteoblasts, endothelial cells, neurons, and
human breast-cancer cells.71

PHYSIOLOGIC ACTIONS OF ESTROGENS

Estrogens stimulate growth, blood flow, and water
retention in sexual organs and are also involved in
causing breast cancer and endometrial cancer. In the
liver, estrogens increase lipoprotein receptors, result-
ing in a decrease in serum concentrations of low-
density lipoprotein cholesterol.72 On the other hand,
estrogens increase the potential for coagulation. In the
gastrointestinal tract, estrogens may protect against
colon cancer.73 In aging skin, estrogens increase tur-
gor and collagen production and reduce the depth
of wrinkles74 (Fig. 5).

Actions on Breast Tissue

The lobular units of the terminal ducts of the
breast tissue of young women are highly responsive

to estrogen. In breast tissue, estrogens stimulate the
growth and differentiation of the ductal epithelium,
induce mitotic activity of ductal cylindric cells, and
stimulate the growth of connective tissue.76 Estro-
gens also exert histamine-like effects on the micro-
circulation of the breast. The density of estrogen re-
ceptors in breast tissue is highest in the follicular
phase of the menstrual cycle and falls after ovula-
tion.77 Estrogens stimulate the growth of breast-can-
cer cells. In postmenopausal women with breast can-
cer, the tumor concentration of estradiol is high,
because of in situ aromatization, despite the presence
of low serum estradiol concentrations.78

Actions on the Central Nervous System

The brain aromatization hypothesis proposes that
sexual differentiation in the brain — that is, the ability
of estrogen to cause a surge of gonadotropin secre-
tion in women — is dependent on local conversion of
androgens to estrogens.79 The rate of aromatization
of androgen to estrogen in the brain is low as com-
pared with that in other tissues, but nevertheless, lo-
cal estrogen production is believed to have impor-
tant actions. One example of this is the synergistic

Figure 4. Ligand-Dependent and Ligand-Independent Estrogen-Receptor Activation.
The estrogen receptor can be activated by estrogen (left-hand panel) or independently of estrogen — for example, by growth factors
that increase the activity of protein kinases that phosphorylate different sites on the receptor molecule. In this model (center panel),
the unbound but activated receptor will then exert transcriptional effects. In the case of the nonnuclear estrogen-signaling pathway
(right-hand panel), cell-membrane estrogen receptors are located in cell-membrane invaginations called caveolae. Their activity is
linked to the mitogen-activated protein kinase pathway, resulting in a rapid, nonnuclear effect.
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action of estrogens with neurotrophins that is re-
flected in reciprocal receptor regulation or coupled
signaling pathways.80

In later life, estrogens are thought to have neuro-
protective actions. In brain tissue from adult rats, es-
trogens induce synaptic and dendritic remodeling81

and cause glial activation.82 In neurons of the hip-

pocampus, an area involved in memory, estrogens
increase the density of N-methyl-D-aspartate recep-
tors and increase neuronal sensitivity to input medi-
ated by these receptors.83

In cultured human neuroblastoma cells, estrogens
have neuroprotective effects84 and reduce the gener-
ation of beta-amyloid peptides.85 Some epidemio-

Figure 5. Effects of Estrogens in Different Organ Systems.
Estrogens have neuroprotective effects and reduce perimenopausal mood fluctuations in women. In the eye, estrogens lower in-
traocular pressure.75 Estrogens are arterial vasodilators and may have cardioprotective actions. In the liver, estrogens stimulate the
uptake of serum lipoproteins as well as the production of coagulation factors. Estrogens also prevent and reverse osteoporosis and
increase cell viability in various tissues. In addition, estrogens stimulate the growth of endometrial and breast tumors. Estrogens
may protect against colon cancer, since colon cancer appears to be less likely to develop in postmenopausal women who are re-
ceiving estrogen-replacement therapy than in women who are not receiving this therapy. When applied topically, estrogens in-
crease skin turgor and collagen production and reduce the depth of wrinkles.
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logic data suggest that in postmenopausal women,
estrogen deficiency is associated with a decline in
cognitive function and an increased risk of Alzhei-
mer’s disease.86 However, in a randomized trial, es-
trogen administration had no beneficial effect in
women with established Alzheimer’s disease.87

Vascular Effects

Estrogens are thought to be natural vasoprotective
agents. Estrogen receptors have been detected in
smooth-muscle cells of coronary arteries88 and endo-
thelial cells in various sites.89 Estrogens cause short-
term vasodilation by increasing the formation and
release of nitric oxide and prostacyclin in endothelial
cells.67 They also reduce vascular smooth-muscle
tone by opening specific calcium channels through
a mechanism that is dependent on cyclic guanosine
monophosphate.90 A protective role of estrogens
against atherosclerosis is suggested by the finding
that estrogen treatment reduced the progression of
coronary-artery atherosclerosis in oophorectomized
monkeys. There was, however, no effect on preexist-
ing plaques.91 On the cellular level, estrogens inhibit
apoptosis of endothelial cells92 and promote their
angiogenic activity in vitro.93

Despite these findings, one of the key questions in
women’s health — whether estrogen treatment in
the postmenopausal period prevents atherosclerosis
— remains controversial.94 The favorable findings of
epidemiologic studies have to be balanced by the
lack of benefit of estrogen for secondary protection
against cardiovascular disease in the Heart and Es-
trogen/Progestin Replacement Study.95

Effects on Bone

Both osteoclasts96 and osteoblasts97 express estro-
gen receptors and are direct targets for estrogens, but
overall, estrogens are classified as antiresorptive agents.
Estrogens directly inhibit the function of osteoclasts.
In oophorectomized mice, estrogen deficiency in-
creased the production of interleukin-6, interleukin-1,
and tumor necrosis factor in osteoblasts and other
bone-derived stromal cells. These factors indirectly
stimulate osteoclast differentiation.98 In bone extracts
from postmenopausal women with osteoporosis, the
concentrations of interleukin-6 and interleukin-1
mRNA were also high.99 Estrogen deficiency is known
to accelerate bone loss and increase susceptibility to
fractures. Estrogen therapy diminishes bone loss100

and reduces the risk of fracture in women with os-
teoporosis and in those without this condition for
the duration of therapy.101,102

CONCLUSIONS

It is now clear that estrogens act by multiple mech-
anisms in many different tissues. Agents with estro-

genic activity in a limited number of estrogen-target
tissues are already available. In the future, it should
be possible to target particular actions of estrogen with
increasing specificity and therefore with more bene-
fits and fewer unwanted effects.
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